

Quantum Time Series Analysis (QTSA)
+Quantum Time Series Autoencoders (QTSAE)

Jacob L. Cybulski
Enquanted, Melbourne, Australia

Introduction to QTSA
QTSA aims, objectives and tasks
QTSA apps and algorithms
QTSA QML foundations
QTSA data encoding
QTSA state measurement
QTSA model execution
QTSA challenges
The curse of dimensionality
Expressivity vs trainability
QTSAE case study –

Quantum TS Autoencoders
QAE vs QML principles

Summary and conclusions

The aims of this session:

To explain methods of
Quantum Time Series
Analysis, its models,
algorithms, benefits and
challenges

17-22 Nov 2025, JIMS, Rohini, India

measurement

Pauli
rotations

We will assume
some knowledge of

Quantum Computing
ML and Python

Creative Commons CC BY-NC-ND

 2 / 22

Understanding the past
Predicting the future

● Time series (TS) data and their visualisations inform
experts, governments and the public

● Time series analysis aims to identify patterns in
temporal data to support forecasting, classification and
clustering tasks

● Time series analysis is an established discipline,
with excellent tools and efficient methods, such as
ARIMA or GARCH, and deep TS models (LSTM or GRU)

● Organisations that rely on time-based information are
still in the pursuit of more effective analytic methods

● Quantum machine learning is a novel approach to
time series analysis, with the potential for detecting
high-complexity patterns in temporal data

Understanding
Decisions

Action

As it happened ... What’s
next?

Predictions
Plans

Budgets
Risks
Policy

 3 / 22

Neural Nets for
Time Series Analysis

● Simple neural networks, e.g. Multi-Layer Perceptrons
(MLPs), map numeric inputs into outputs, via layers of
interconnected nodes, responsible for calculating
weighted sums of preceding node values, which are
transformed with non-linear activation functions

● The MLP weights are trained in the optimisation process,
by matching the calculated vs expected outputs

● Some neural networks can be trained for time series
analysis, e.g.

□ Recurrent Neural Networks (RNN)
□ Long Short-Term Memory (LSTM) nets
□ Gated Recurrent Units (GRU) nets

● Unlike MLPs, RNNs, LSTMs and GRUs are able to retain
and rely on memory of the past data

● MLPs and RNNs are similar in their structure to some
types of quantum models

Input encoding

Data processing

Neural Net

t=0 t=1 t=2 t=... t=18 t=19

t=18 t=19 t=20

Dense Layer

Warmup

Label

Embedding LayerInput

Encoded Inputs

Output encoding

Outputs

RNN

Time
Relations

 4 / 22

QTSA

Quantum time series analysis (QTSA)
applies Quantum Machine Learning (QML)
techniques to analyse temporal data

QTSA applications include medical signal
monitoring, remote sensing and forecasts,
machine condition monitoring, business
forecasting and analytics, etc.

● TS can be univariate or multivariate
● TS display patterns repeating over time

Acknowledgements:
Gearbox and Vibration Analysis ML, 2023,

Nakkeeran, Kaggle.com
Gemini/GNIRS spectra, 2017,

NOIRLab, Wikimedia.
Bronnenberg, B.J., Kruger, M.W., Mela, C.F., 2008.

Database Paper —The IRI Marketing Data
Set. Marketing Science 27, 745–748.
https://doi.org/10.1287/mksc.1080.0450

Earthquake, Mag 7.3, East Coast of Honshu, Japan,
2011, The Global Seismogram Viewer,
http://ds.iris.edu/gsv

EEG of brain and heart action, 2012,
Otoomuch, Wikimedia.

Machine condition monitoring

Astronomical observations

EEG analysis

Earthquakes

all data are
temporal

all suffer from
noise and anomalies

all could
potentially lead to
catastrophic failures

Sales of beer in USA sliding
window

QTSA tasks
include methods of dealing with time and
change, as represented in temporal data,
but achieved with QML algorithms, e.g.

● by setting the task in terms of curve-fitting
of temporal data to some function (below left)

● by presenting a problem as forecasting
describing changes in terms of pattern-matching
between fragments of the past and the future
(below right).

 5 / 22

Apps, devs and issues

Sample QTSA applications (input → output)

Apps are found in Sci & Eng, Earth Sci, Finance, Meds, etc.
● Explanation (sequence → function)
● Decision support (sequence → logical)
● Function fitting and forecasting (points/sequence → points)
● Monte Carlo + Random walks (constraints → sequence)
● Noise and anomaly elimination (sequence → sequence)

Difficulties in processing TS data
● TS are of high volume
● TS have tacit features
● Neighbouring TS features are highly dependent
● Consecutive TS values are homogenous
● TS have non-local patterns, e.g. cyclicity / seasonality
● TS suffer from noise, anomalies and volatility
● TS data ages quickly
● Statistical / classical approaches to TS analysis require very

strict pre-processing of time-based data

Some QML algorithms that deal with time and change

Time in data
● Quantum Sequence Models (QRNN, QLSTM, QGRU)
● Quantum Reservoir Computing (QRC)
● Quantum Self-Attention and Transformers (LLMs)
● Quantum Fourier Analysis (QFT, PQFT, QFFT)

Change and state evolution
● Quantum Optimisation Algorithms (QAOA, QUBO)
● Quantum Annealing / Quantum Adiabatic Algorithm (QAA)
● Quantum Reinforcement Learning (QRL)
● Quantum Bayesian Modelling (QBN, QBC, QBNN)
● Quantum Genetic Algorithms (QGA)

Supporting models
● Quantum Neural Networks (QNN, VQC/R, QCNN, qGAN)
● Quantum Support Vector Machines (QSVM, QSVC/R)
● Quantum Kernel Methods (Feature Maps, Estimators)
● Quantum Clustering Algorithms (QCA k-NN, DQC)

Olivier Ezratty, Understanding Quantum Technologies, 7th Ed (2024)

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

Sample problem: reduce noise from audio recordings

Possible solution: apply quantum autoencoders

Fragment of a synthetic
highly chaotic signal

True signal
(solid blue line)

Data points from
the noisy signal

Forecasts from
noisy signal

(dashed red line)

Questions:
Should we simply
average signals?
Should we apply a
model-based denoising?

Other questions:
What is normal?
What is abnormal?

Answers:
We can develop a
QTSA model to reduce
noise from signals!

Extensions:
We can then use a noise-
free signal to identify
signal anomalies!

High level of noise
(Gaussian noise of 20%)

TS QAE implementation
in PennyLane or Qiskit

Recovered signal
from noise

(dashed blue line)

testing
data

training
data

What is needed to
create a quantum model
capable of representing

and processing of
temporal data?

 7 / 22

QML Principles:
Parameterised Quantum Circuits (PQC)
and Variational Quantum Algorithms (VQA)

Classical input data is encoded (embedded) into the feature
map’s parameters, setting the model’s initial quantum state.

The quantum state is altered by an ansatz, of parameterised
quantum gates, which are trained by a classic optimiser

The circuit final state is measured and decoded (interpreted)
as the model’s output in the form of classical data.

PQCs are not executable!
They must first be instantiated, i.e. all of their

input and weight parameters must be assigned values!

We can create a “variational” model =
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each
allowing rotation of a qubit state in
x, y or z axis (as per Bloch sphere).

Typically (but now always), such
circuits consist of three blocks:

● a feature map (TS input)
● an ansatz (TS processing)
● measurements (TS output)

measurement

Pauli
rotations

Feature Map
State

MeasurementProcessing
Quantum registers

initialised to |0>

Classical registers
with outputs measured as 0 or 1

Cost
Fun

cost is minimised
during circuit training

Input Parameters (Encoded)

Weight Parameters (Trainable)

Training
Data Set

Classical
optimiser

decoded measurements
are matched against

training data

Feature Map Ansatz

ZZ feature map

VQA is classical
algorithm varying

and optimising
PQC parameters

Output
(Decoded)

 8 / 22

QML Principles:
Ansatz design

feature maps vary in:
structure and function

ansatze vary in:
● width (qubits #)
● depth (layers #)
● dimensions (param #)
● structure (e.g. funnelling)
● entangling (circular, linear, sca)

ansatz layers consist of:
rotation blocks and entangling blocks
of U(z, y, z) and CNOT gates

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy,
hinge-embedding, Kullback-Leibner divergence

different optimisers:
gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit execution on:
simulators (CPUs), accelerators (GPUs) and

real quantum machines (QPUs)

measurement

Pauli
rotations

rotation gates
alter qubit states
around x, y, z
axes

(entanglement)(rotations)

To execute a
circuit we just apply
it to input data and the
optimum parameters

Beware that
adding 1 extra qubit adds

parameters and entanglements!

The number of circuit states
grows exponentially with the

number of qubits!

Beware that (sometimes)
adding 1 more measurement

doubles the number of outcomes!

The number of outcomes
grows exponentially with the

number of measurements!Encoding of classical data in a quantum circuit is
not what our ML experience tells us about inputs !

Dynamic feature map = input reuploaded across the circuit

S1 S2Wb1 Wb2 Wa1

U(z,y,z)

M

Jacob L. Cybulski and Sebastian Zając (2024): "The Art of Data Encoding and Decoding for Quantum Time Series Analysis." 8th International
Conference on Quantum Techniques in Machine Learning University of Melbourne, Melbourne, Australia, 25-29 November 2024.

 9 / 22

S1W1 S2W2 W3

time series with a
sliding window

encoding
blockstrainable ansatz

feature map

Sliding Window
Overloading Model

Quantum
Neural Network

QTSA
Qubit overloading /

Unlimited size
of TS window

TS window
limited to the

number of qubits

Trainable ansatze
separate encoding

blocks

Trainable
state preparation

Potential for
encoding multivariate TS

x

Single trainable
ansatz at the circuit

end only
trainable ansatz

sliding window
encoding

trainable ansatztrainable ansatz

 10 / 22

Does QTSA
design matter?
Each approach to QTSA model’s data encoding, their
processing, and state measurement enhance or impede:

model expressivity, i.e. its ability to effectively represent
time series data in quantum (Hilbert) space; as well as,

model trainability, i.e. its capacity to learn and
generalise for predictive accuracy and efficiency in the
process of model optimisation.

Jacob L. Cybulski and Sebastian Zając (2025):
"Quantum Modelling of Time Series: Expressivity vs. Trainability." 20 August 2025,

Preprint (V1), Research Square [https://doi.org/10.21203/rs.3.rs-7253212/v1].

Are QTSA models better than
classical NN models?

Performance of model
instances with the same design

but different initialisations

Different designs and median
performance across differently

initialised model instances

 11 / 22

Quantum state evolution
Metaphor for quantum state evolution

State
Preparation

Classical Data →
Quantum State

State
Measurement

Quantum State →
Classical Data

Initial (data) state →
Problem state space

Problem state space →
Solution state space

Solution state space →
Results state space

Advantages and Challenges in QTSA model development:

– High-dimensional parameter/state space (large circuits)
🗹 enables linear separation of quantum information, but
🗷 flattens the gradient space.

– Highly entangled circuits (complex circuits)
🗹 inter-relate qubits and their training parameters, but
🗷 suffer from non-local gradients, complex state dynamics,
cost landscape complexity, and high decoherence rate.

It matters what quantum architecture is to be used!

– Global cost (measuring all qubits)
🗹 allows better utilisation of model training parameters, but
🗷 requires exponential increase of the circuit runs, needed
to prevent sparse distribution of outcomes.

– Model initialisation (optimisation starting point)
🗹 quick, easy and popular random params initialisation, but
🗷 proven to make model optimisation ineffective.

All of the above are known to attract barren plateaus!

matters matters matters

 12 / 22

The curse of
dimensionality

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on the
quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

Sparse measurement outcomes
(too many measurements, esp. as probability distribution)

● When increasing the number of measurements,
we also exponentially increase the number of
outcomes, leading to the exponential increase
in the number of circuit runs!

● Unless the number of runs is increased with
measurements, distribution of outcomes becomes
sparse and the probability calculations become
imprecise (fig. left).

45-D space4-D space

optimum
optimum

initial point initial point

cost landscape
surface

Barren Plateaus
(too many dimensions = qubits and/or parameters)

● Pairwise distances between uniformly distributed
points in high-dimensional space become (almost)
identical, and its surface is (almost) flat (fig. left).

● In a quantum model with a high-dimensional
parameter space, the cost landscape also becomes
(almost) flat, called barren plateau (BP).

● When BPs emerge, the optimiser struggles finding
the optimum model parameters.

● Selecting the optimisation initial point far from the
optimum (e.g. random) makes it even more difficult!

Note how
volume (grey) in

n-ball shrinks
(max n=5)

Note the sparse distribution
of measurement outcomes.
As counts are very low, the
calculated probabilities
become very imprecise!

volume

 13 / 22

QTSA case study
Quantum TS Autoencoders

QML principles used in QTSAE modelling:
● Unitary quantum operations perform norm-preserving linear transforma-

tion of quantum states in quantum (Hilbert) space.
● All standard quantum gate operations are unitary, e.g. state rotations

(Rx, Ry, Rz, X, H) and entanglements (CNOT).
● Blocks, circuits and combinations of unitary operations are also unitary.
● Unitary operations preserve quantum information, which means that in

response to their action, quantum information shifts between qubits and
their gates but is never lost.

● Unitary models are reversible, i.e. applying all operations in reverse or-
der (perform adjoint) fully reverses their effect on quantum state.

● Unitary operations can be treated as differentiable functions, so their
behaviour can be analysed using standard mathematical approaches,
gradient-based optimisers rely on differentiability of quantum circuits.

● Some quantum operations destroy quantum state and are not unitary,
e.g. qubit initialisation, mid-circuit resetting, and state measurement,
and in the process we lose significant parts of quantum information.

Fair use, Wikipedia:
https://en.wikipedia.org/w/index.php?curid=3475111

https://en.wikipedia.org/w/index.php?curid=3475111

Classical Autoencoders &
Quantum Autoencoders

● Autoencoders (AE) are ML models that
encode information into a compact /
compressed form, from which approximate
information content can be decoded effectively

● In the process AEs lose the infrequent,
insignificant or unwanted parts of information

● Typically, an AE is implemented as a multilayer
perceptron, which includes:
□ Input layer of N nodes of some data
□ AE encoder consisting of a neural network encoding

input of N nodes into a smaller n nodes
□ Latent layer (also known as “code”) containing

compressed representation of input
□ AE decoder consisting of a neural network

recreating (decoding) input information
□ Output layer of N nodes representing decompressed

information

● AEs are used for data compression,
representation, data search, denoising and
anomaly detection, e.g. in images and signals

A
E

E
nc

od
er A

E
D

ecoderLa
te

n
t

La
ye

r
(n

)

In
pu

t
La

ye
r

(N
)

O
ut

pu
t L

a
ye

r
(N

)

In training AE
learns to efficiently represent

a sample of data in compressed form

● Quantum Autoencoders (QAE) utilise QML to implement AE
● There are still few practical applications of QAEs
● QAEs have the potential to assist in detection, removal or

reduction of highly complex noise and anomaly patterns
● We will apply QAE to time series analysis
● Some aspects of QAEs design cannot be achieved with classical ML!

The “monolith” architecture
of TS denoising QAE

QAE:
Restating AE principles in QML terms
□ Quantum model: a circuit of N qubits to match

time series windows of N values - this may vary
depending on the QAE architecture

□ Input encoder: a quantum feature map
embedding a window of noisy classical TS
values on input, thus preparing the circuit state

□ QAE encoder: a quantum ansatz of several
layers consisting of trainable parameter blocks
and entangling blocks, evolving the state of N
qubits into a state of n qubits (n < N)

□ Latent space: representing the essential
features of the window embedded in the initial
circuit state

□ Trash space: representing information lost in
QAE training, such as signal noise, it is
measured and reinitialised to prevent flow of
this information to the QAE decoder

□ QAE decoder: a quantum ansatz of several
layers consisting of trainable parameter blocks
and entangling blocks, evolving the state of the
latent space of n qubits into a state of N qubits

□ Output layer: a measurement block resulting in
classical data, which can be interpreted as a TS
window of N values with reduced noise

Q
A

E
D

ec
od

er

|0⟩|0⟩

Q
A

E
E

nc
od

er
Latent
Space

Trash
Space

Encoded
noisy data

Decoded
recovered pure data

ze
ro

Input
(e.g. noisy signal)

Output
(e.g. noise-free signal)

Compressed data
(e.g. the essence of signal)

Lost information
(e.g. signal noise)

Trainable
ansatz

Trainable
ansatz

Measurement

Model training by presenting pairs of noisy and pure data

Optimization of ansatze parameters
Denoising “monolith” QAEsingle stage (pure+noisy data)

Different noise
is injected at
each training
epoch / batch

The “monolith” QAEs potentially have many weights, and so their training can be
computationally expensive. Therefore, we are looking for alternative designs!

Mid-circuit measurement /
reset introduces non-
linearity to its operation

Results of measurement
must match encoded
input data!

Training a denoising “monolith” QTSAE

● Training denoising QTSAE
commonly involves injecting syn-
thetic noise into clean TS data at
each optimisation cycle

● Then we train the model by
presenting pairs of clean and
noisy TS signals

● It is often sufficient to inject
noise of a generic distribution,
e.g. Uniform, Poisson, Gaus-
sian, etc.

Jacob L. Cybulski and Sebastian Zając (2024): "Design Considerations for Denoising Quantum Time-Series Autoencoder."
In Proc. of 24th International Conference on Computational Science (ICCS), edited by Leonardo Franco, Clélia de

Mulatier, et al, Lecture Notes in Computer Science, LNCS, vol. 14837, Part VI, 252–67, July 2-4, 2024, Malaga, Spain.

Replicating QAE with half-QAE When the latent space spans all qubits, QAE is
unitary, therefore there is no loss of information.

As the QAE Encoder is an inverse of the QAE De-
coder, hence they always cancel each other opera-
tions – regardless of their weights.

When we reset trash space, QAE is no longer
unitary and we will be destroying information
flowing from the encoder to decoder.

However, we can train the QAE Encoder / Decoder
to reduce information loss, while preserving their
mirror structure and symmetric weights.

As QAE Encoder is an adjoint of QAE Decoder,
training only QAE Decoder† is enough, e.g. by
ensuring most of its information flows through the
latent space, i.e. by converging trash to zero.

ze
ro

D
ec

od
er
†

In
 tr

ai
ni

ng

Latent
Space

Trash
Space

Encoded
pure data

ze
ro

Let’s design a QAE to consist of encoder and decoder unitaries to have
mirror image structures, i.e. a QAE Encoder is an adjoint of a QAE Decoder!

D
ec

od
er

sh
ar

ed
 r

an
do

m

Latent
Space

Trash
Space

Encoded
pure data

Decoded
recovered pure data

ze
ro

D
ec

od
er
†

sh
ar

ed
 r

an
do

m

X

D
ec

od
er

sh
ar

ed
 tr

ai
ne

d

|0⟩|0⟩

Latent
Space

Trash
Space

Encoded
pure data

Decoded
recovered pure data

ze
ro

D
ec

od
er
†

sh
ar

ed
 tr

ai
ne

d

X

It is possible to improve the replication
performance by breaking the weight

symmetry, however, we are no longer
able to rely on the half-QAE training

Qubits in trash space can be reset by
measurement-with-reset → QAE is no

longer unitary; alternatively with the
SWAP operation → QAE stays unitary

adjoint

adjoint

Inverted
pure data

Inverted
pure data

Denoising TS with
Stacked half-QAEs

ze
ro

D
ec

od
er
†

In
 tr

ai
ni

ng

Latent
Space

Trash
Space

Encoded
pure input

ze
ro

Phase 2: We then train a QAE encoder with noisy
data, in combination with an inverted and
previously trained QAE decoder, which will
produce an inverse of pure data approximation.

In a perfect QAE this output would cancel pure
data encoding, so we aim to converge it to zero.

Encoded
pure data

D
ec

od
er

tr
ai

ne
d

|0⟩|0⟩

Latent
Space

Trash
Space

Encoded
noisy data

ze
ro

E
nc

od
er

In
 tr

ai
ni

ng

ze
ro

Inverted
pure data

A suitable cost function would
optimise the encoder weights to

converge output to zero

As noted previously,
once trained, the integrated

circuit will require to invert its
output with X on every qubit

This cannot be done using
classical methods!

When we introduce noisy signal on input, the
replicating QAE are able to reduce signal noise by
adjusting the trash size and weights.

However, the replicating QAEs are limited!

QAE can be further improved by breaking their
weight symmetry and training them with noisy and
pure signals in two phases.

Phase 1: As before, we train an
inverted QAE decoder using pure
data and a cost function aiming to
converge trash to zero.

Anatomy of a unitary QAE

rotation
block

entangling
block

rotation
block

mid-circuit measurement /
or initialisation block

inverted
rotation
block

input
block

output
block

entangling
block

inverted
entangling

block

inverted
entangling

block

la
te

nt
 q

ub
its

tr
as

h
qu

bi
ts

en
co

di
ng

qu
bi

ts
ex

tr
a

qu
bi

ts

m
ea

su
re

d
qu

bi
ts

ansatz layer ansatz layer ansatz layer ansatz layer

QAE encoder QAE decoder

QAEs resetting trash qubits mid-circuit are no longer unitary,
hence not differentiable, and slow to optimise.
Instead we can apply SWAP operations with zero initialised
qubits, as shown here.

Such circuits are unitary, and so differentiable, and can be
optimised using gradient-based methods (e.g. ADAM).
Note that QAE nsatze may be extended with extra qubits to
create more trainable parameters.

trash qubits are
being reset!

inverted
rotation

block

ex
tr

a
qu

bi
ts

ze
ro

 in
it

qu
bi

ts

Anatomy of Hybrid QAEs
Hybrid QAE encoder and decoder

Training of the “monolith” QAE always faces difficulties due to
the large dimensionality of its parameter space. This was
partially addressed by training its half-QAEs separately.

Al alternative strategy is to adopt a hybrid QAE architecture,
which is organised its into a combination of classical layers
and shallow quantum layers, trained efficiently together.

However, in the process of mid-circuit measurement,
hybrid QAEs lose phase information to the detriment of their
function and effectiveness = possible quantum advantage.

QAE encoder and decoder do not need to be symmetric,
e.g. here, they are not mirror images of each other.

PennyLane and PyTorch have excellent support for
manipulation of gradients, offering several highly efficient
gradient optimisers. For example, here we can adopt an
NAdam optimiser.

Note that other quantum SDKs, such as Qiskit, also provide
great gradients support used by their optimisers.

hybrid latent
space

rotation
block

entangling
block

rotation
block

rotation
block

rotation
block

input
block

hybrid output
block

ansatz layer ansatz layer ansatz layer ansatz layer

m
ea

su
re

d
qu

bi
ts

en
co

di
ng

 q
ub

its
ex

tr
a

qu
bi

ts

classical
layer (PyTorch)

entangling
block

entangling
block

entangling
block

tr
as

h
qu

bi
ts

la
te

nt
 q

ub
its

classical
layer (PyTorch)

As unitary circuits are differentiable, therefore, they can be combined into
systems composed of quantum and classical components. For example, it is
possible to form a hybrid QAE of two quantum circuits separated by layers of
classical neural networks. Such models can be trained very efficiently!

Here is a “minimum” hybrid model...

Summary

QTSA insights
● The aims of quantum time series analysis (QTSA)

is to apply principles of Quantum Machine Learn-
ing to the analysis of temporal data

● QTSA applications include medical signal monit-
oring, remote sensing and forecasts, machine
condition monitoring, business forecasting and
analytics, etc

● QTSA considers time as an external variable
presiding over changes in observable phenom-
ena, which are represented in and acted on by
quantum models and algorithms

● QTSA needs to deal with common challenges of
temporal data, such as its high volume, tacit fea-
tures, feature dependency, homogeneity of con-
secutive values, non-local patterns, noise, an-
omalies and volatility, short life-time

● QML offers many quantum models and al-
gorithms of use to QTSA tasks

QTSAE insights
● QTSA algorithms rely on parameterised quantum circuits and

hybrid quantum-classical variational quantum algorithms
● QTSA models typically consist of a feature map encoding data,

an ansatz of parameterised gates and measurements
● QTSA TS encoding is challenging, due to limited qubit

resources, so it benefits from data reuploading / overloading
● QTSA development challenges include dealing with high-

dimensional parameter space, highly entangled circuits, global
measurements and parameter initialisation strategies

● QTSA high-dimensionality is its curse!
● QTSA success = adopting a suitable model architecture, which

could deliver its high expressivity as well as its trainability
● TS QAEs are QTSA models, which take advantage of QML

features absent from classical ML models, such as preservation
of quantum information, differentiability and reversibility of
model unitaries!

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash and Wikipedia

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

