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°* Time series analysis is an established discipline,
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300 Decisions Plans
20| Action ey arelsblock Budgets
- - . o Risks
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* Simple neural networks, e.g. Multi-Layer Perceptrons - . o o ° o * ~
(MLPs), map numeric inputs into outputs, via layers of " e i : 2 : : :
interconnected nodes, responsible for calculating # ” °o Do T
weighted sums of preceding node values, which are T : ) g‘:}_@e o
transformed with non-linear activation functions ” 4 b &;\g@".@oﬁ‘ il
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* The MLP weights are trained in the optimisation process, ¥ Neural Net o-{2 2 158
by matching the calculated vs expected outputs
* Some neural networks can be trained for time series ot Embedding Laver nout encodin
analysis, e.g. P "9 -y pu "9
’ Recurrent Neural Networks (RNN) t=0 t=1 t=2 t=... t=18 t=19 | Encoded Inputs
o Long Short-Term Memory (LSTM) nets
5 Gated Recurrent Units (GRU) nets . ,JL‘ ,JL‘
Time [ [ ] B .
. . Relations u u L J L J L] Data processing
* Unlike MLPs, RNNs, LSTMs and GRUs are able to retain
and rely on memory of the past data T ;
! Warmup ' | t=18 | | t=19| | t=20 | Outputs
* MLPs and RNNSs are similar in their structure to some N\ /

types of quantum models RNN Output encoding | Dense Layer ——> Label
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Quantum time series analysis (QTSA) o = ‘ ) SN20L7eaw
applies Quantum Machine Learning (QML) ' I3 - < ]
techniques to analyse temporal data
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QTSA applications include medical signal
monitoring, remote sensing and forecasts,
machine condition monitoring, business
forecasting and analytics, etc.
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Earthquakes | : TS display patterns repeating over time O Mo

?A__HW " Astronomical observations
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QTSA tasks all data are Acknowledgements:

include methods of dealing with time and temporal G akicooran, Kagglo.com T 202

Nakkeeran, Kaggle.com
Gemini/GNIRS spectra, 2017,

change, as represented in temporal data,

! X . ; w;w all suffer from NOIRLab, Wikimedia.
i i i Bronnenberg, B.J., Kruger, M.W., Mela, C.F., 2008.
bUt aChIeved Wlth QML algorlthms’ eg noise and anomalies Database Paper —The IRI Marketing Data
. . .. Set. Mark_eting Science 27, 745-748.
* Dby setting the task in terms of curve-fitting all could . Mtpsildoiorg/10.1287miksc.1080.0450
of temporal data to some function (below left) potentially lead to A 0IL. The Global Seismogram Viewer,
catastrophic failures http:/ds.iris.edu/gsv

EEG of brain and heart action, 2012,
Otoomuch, Wikimedia.

* by presenting a problem as forecasting
describing changes in terms of pattern-matching
between fragments of the past and the future
(below right).




Some QML algorithms that deal with time and change

Apps, devs and issues

Time in data
* Quantum Sequence Models (QRNN, QLSTM, QGRU)
* Quantum Reservoir Computing (QRC)
Sample QTSA applications (input - output)  Quantum Self-Attention and Transformers (LLMs)

Apps are found in Sci & Eng, Earth Sci, Finance, Meds, etc. * Quantum Fourier Analysis (QFT, PQFT, QFFT)
* Explanation (sequence — function)

» Decision support (sequence — logical)

* Function fitting and forecasting (points/sequence — points)
* Monte Carlo + Random walks (constraints — sequence)

* Noise and anomaly elimination (sequence — sequence)

Change and state evolution
e Quantum Optimisation Algorithms (QAOA, QUBO)
* Quantum Annealing / Quantum Adiabatic Algorithm (QAA)
* Quantum Reinforcement Learning (QRL)

Difficulties in processing TS data * Quantum Bayesian Modelling (QBN, QBC, QBNN)

TS are of high volume * Quantum Genetic Algorithms (QGA)

* TS have tacit features

* Neighbouring TS features are highly dependent Supporting models

* Consecutive TS values are homogenous - Quantum Neural Networks (QNN, VQC/R, QCNN, qGAN)

* TS have non-local patterns, e.g. cyclicity / seasonality . .
* TS suffer from noise, anomalies and volatility Quantum Support Vector Machines (QSVM, QSVC/R)

- TS data ages quickly * Quantum Kernel Methods (Feature Maps, Estimators)

- Statistical / classical approaches to TS analysis require very * Quantum Clustering Algorithms (QCA k-NN, DQC)

strict pre-processing of time-based data - _ _
Olivier Ezratty, Understanding Quantum Technologies, 7th Ed (2024)

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.



Target value

Sample problem: reduce noise from audio recordings
Possible solution: apply quantum autoencoders

Pure data vs recovered from noisy data (data="mackey glass tau30 n200", noise nhorm=0.200, avg=0.098)

What is needed to
create a quantum model
capable of representing

and processing of

temporal data?

10 Data points from . <lra/mng [estmg’ Questions:
. the noisy signal ) True signal ) data | data Should we simply
; ; Recovered signal Forecasts from average signals?
« (solid blue line) ; ey
. from noise noisy signal Should we apply a
. * (dashed blue line) (dashed red line) model-based denoising?
0.8 7 ) . . ' ’ . . Other questions:
: ‘N " | L What is normal?
. \ A L - . \ What is abnormal?
. ‘\ N A . .
, - L . . A s 1 \ n ) h ' .
0.6 t { - : I a gy Hl \ III|I JRN "\j. I\ "
yr \ o 0o v | A \ 1 | I''h
. I ] ] W Va \ . 1 | e e Ty |
' o K [ 1 ‘ o \ | ! v/
. ' A W 1, A I o ' | Answers:
h oo X v ! \ ! : 9 \ u || . We can develop a
| ! ) i "1y . I " | ’ QTSA model to reduce
0.4 ! \ . l\,' . ‘ ) ] I| noise from signals!
S N ,' ¢ V Extensions:
. ) ’ We can then use a noise-
0.2 ! X : ) free signal to identify
. ) . . . _ signal anomalies!
Fragment of a synthetic . High level of noise g
highly chaotic signal s (Gaussian noise of 20%)
*  Sample Train Noise (MSE=0.01560) —— Train Pure === Train Recovered (MSE=0.00647)
0.0 - Sample Test Noise (MSE=0.01606) — Test Pure —==- Test Recovered (MSE=0.00631) TS QAE implementation
: . : : . : . . : in PennyLane or Qiskit
0 25 50 75 100 125 150 175 200

Range (samples=200, window size=5, step=2)



Q M L P I‘i n Ci p I esS.: PQCs are not executable!

Parameterised Qu antum Circuits (PQC) _ The_y must first be instantiated, l:.e. all of their
. .- ) input and weight parameters must be assigned values!
and Variational Quantum Algorithms (VQA)

Quantum registers State
initialised to |0> \ Feature Map Processing Measurement
Output
ZZ feature map (Decoded)

T
e

A

o

—

. 3 Input Parameters (Encoded)
5 Feature Map Weight Parameters (Trainable) Ansatz . L 5
meas |= -
£
: -/ § :

. Classical regls;erso , VQA is classical Classical

with outputs measured as 0 or algorithm varying optimiser
We can create a “variational” model = and optimising
PQC parameters

decoded measurements
are matched against
training data

cost is minimised
during circuit training

a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each
allowing rotation of a qubit state in

X,y or z axis (as per Bloch sphere).

Pauli

rotations Classical input data is encoded (embedded) into the feature

map’s parameters, setting the model’s initial quantum state.

~ The quantum state is altered by an ansatz, of parameterised
guantum gates, which are trained by a classic optimiser

The circuit final state is measured and decoded (interpreted)
as the model’s output in the form of classical data.

Typically (but now always), such ~ [_.---==="
circuits consist of three blocks: -

* afeature map (TS input)
* an ansatz (TS processing)
* measurements (TS output)

——h =



Beware that (sometimes) Beware that

= = . adding 1 more measurement adding 1 extra qubit adds
Q M L P rl nCI p I eS - doubles the number of outcomes! parameters and entanglements!
1 The number of outcomes The number of circuit states
Ansatz deSIQ n grows exponentially with the grows exponentially with the
Encoding of classical data in a quantum circuit is number of measurements! number of qubits!
not what our ML experience tells us about inputs !
Wbl S1 Whb2 S2 Wal M
% ¢ L e ¢ l e © L
ql BI003], B[004], BI0OS] * % *:J/:. 2 BIO12). B[I:‘:Sl. B[014) * % *i’. 2| *
. é o] v ] é [ i ?
| x, —n/2, 2] B[015]. B[016]. B[017] | x. —n/2, 2]
meas 3 - 0 1 2

feature maps vary in:
structure and function

ansatze vary in:

* width (qubits #)

* depth (layers #)

* dimensions (param #)
 structure (e.g. funnelling)
 entangling (circular, linear, sca)

ansatz layers consist of:
rotation blocks and entangling blocks
of U(z, y, z) and CNOT gates

Dynamic feature map = input reuploaded across the circuit

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy,
hinge-embedding, Kullback-Leibner divergence

-y different optimisers:
rotations |8 / : gradient based (Adam, NAdam and SPSA)
-------- linear approximation methods (COBYLA)

. ; >, non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit we just apply circuit execution on:
it to input data and the simulators (CPUs), accelerators (GPUs) and
optimum parameters real quantum machines (QPUS)

rotation gates
alter qubit states
around x, Y, z
axes

To execute a

Jacob L. Cybulski and Sebastian Zajgc (2024): "The Art of Data Encoding and Decoding for Quantum Time Series Analysis." 8th International

Conference on Quantum Techniques in Machine Learning University of Melbourne, Melbourne, Australia, 25-29 November 2024.



TS window
limited to the
number of qubits

Single trainable
ansatz at the circuit
end only

feature map trainable ansatz
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sliding window

time series with a Quantum
sliding window Neural Network

encoding )
encoding
trainable ansatz trainable ansatz blocks trainable ansatz
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blocks Overloading Model
Qubit overloading / Potential for
QTSA Unlimited size "7 encoding multivariate TS

of TS window




Model "xgnn_ng" (q7, in5, fm1, anz3): instance testing performance (sm.emt=0.50, iter# 68)

==+ 0 (min Cost=0.00342435 @ iter# 62)
—-+ 1 (min Cost=0.00364747 @ iter# 63)
2 (min Cost=0.00420992 @ iter# 67)
[\

----- 3 (min Cost=0.00404639 @ iter# 64)
4 (min Cost=0.00636063 @ iter# 58)
—— 5 (min Cost=0.00294449 @ iter# 52)

u o
6 (min Cost=0.00776675 @ iter# 43)
™ 7 (min Cost=0.00700147 @ iter# 62)
4 & (min Cost=0.00528276 @ iter# 56)

1014 9 (min Cost=0.00681259 @ iter# 40)

Each approach to QTSA model’s data encoding, their = Performance of model
processing, and state measurement enhance or impede: ¥ W instances with the same design
s W\ but different initialisations
model expressivity, i.e. its ability to effectively represent ) \
time series data in quantum (Hilbert) space; as well as,
1072

model trainability, i.e. its capacity to learn and
generalise for predictive accuracy and efficiency in the
process of model optimisation.

Iteration

Table 2 Results - comparison of QTSA models’ performance

Training Testing
Model Type Qubits Params R? R2 Specs

serial curve-fitting 1 66 0.9966 0.9192 gl 121
serial curve-fitting 1 84 09977  0.9107 gl 127
Are QTSA models better than parallel curve-fitting 5 120  0.8460  0.6957 q5 bl3 al3 Diff t desi d medi

classical NN models?  parallel  curve-fitting 5 90  0.8145 0.7137 g5 bll al3 lirerent aesigns ana meailan
sparallel _curvefitting 3 8109980 0983 q3blTall performance across differently
xqnn forecasting 7 105  0.9858 0.8478 7 ind fml anzd initialised model instances
xqnn forecasting 7 84 0.9603 0.8796 7 inb fml anz3
ovioad 1 forecasting . 4 168 08888 08737 qdx13il2
cnn forecasting 0 6181  1.0000 0.9797  hl050 080 020

Jacob L. Cybulski and Sebastian Zajac (2025):
"Quantum Modelling of Time Series: Expressivity vs. Trainability." 20 August 2025,
Preprint (V1), Research Square [https://doi.org/10.21203/rs.3.rs-7253212/v1].



Quantum state evolution

Metaphor for quantum state evolution

Initial (data) state —» Problem state space —» Solution state space -
Problem state space Solution state space Results state space

5 & o 5 (g?ﬂ @ @ )
(- (&) (&) (®) (#) (&) &P
State B = Ere—+8 ®) (=) &) State
Preparation B (&) () - B¢ &—= &) Measurement
B~ (&) D P ®) (&) @ &) (&) &2
Classical Data - @ @ b @ almae llm FLb D Quantum State —
Quantum State =) =) =AY = ~ = =) =AY Classical Data
matters matters matters

Advantages and Challenges in QTSA model development:

- High-dimensional parameter/state space (large circuits)
[V enables linear separation of quantum information, but
flattens the gradient space.

- Highly entangled circuits (complex circuits)
VI inter-relate qubits and their training parameters, but
(x] suffer from non-local gradients, complex state dynamics,
cost landscape complexity, and high decoherence rate.

It matters what quantum architecture is to be used!

- Global cost (measuring all qubits)
V] allows better utilisation of model training parameters, but
requires exponential increase of the circuit runs, needed
to prevent sparse distribution of outcomes.

- Model initialisation (optimisation starting point)
VI quick, easy and popular random params initialisation, but
[x] proven to make model optimisation ineffective.

All of the above are known to attract barren plateaus!
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The curse of
dimensionality
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volume (grey) in
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Note the sparse distribution
of measurement outcomes.
As counts are very low, the
calculated probabilities
become very imprecise!

Probability
o °
w >

o
N

o
o

/(‘_04
°
°

Outcome

Outcome

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on the
quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

Barren Plateaus
(too many dimensions = qubits and/or parameters)

» Pairwise distances between uniformly distributed
points in high-dimensional space become (almost)
identical, and its surface is (almost) flat (fig. left).

* In a quantum model with a high-dimensional
parameter space, the cost landscape also becomes
(almost) flat, called barren plateau (BP).

* When BPs emerge, the optimiser struggles finding
the optimum model parameters.

« Selecting the optimisation initial point far from the
optimum (e.g. random) makes it even more difficult!

Spar Se measurement outcomes
(too many measurements, esp. as probability distribution)

* When increasing the number of measurements,
we also exponentially increase the number of
outcomes, leading to the exponential increase
in the number of circuit runs!

* Unless the number of runs is increased with
measurements, distribution of outcomes becomes
sparse and the probability calculations become
imprecise (fig. left).



QTSA case study

Quantum TS Autoencoders

QML principles used in QTSAE modelling:

. Unitary quantum operations perform norm-preserving linear transforma-
tion of quantum states in quantum (Hilbert) space.

*  All standard quantum gate operations are unitary, e.g. state rotations
(Rx, Ry, Rz, X, H) and entanglements (CNOT).

. Blocks, circuits and combinations of unitary operations are also unitary.

. Unitary operations preserve quantum information, which means that in
response to their action, quantum information shifts between qubits and
their gates but is never lost.

. Unitary models are reversible, i.e. applying all operations in reverse or-
der (perform adjoint) fully reverses their effect on quantum state.

e Unitary operations can be treated as differentiable functions, so their
behaviour can be analysed using standard mathematical approaches,
gradient-based optimisers rely on differentiability of quantum circuits.

. Some quantum operations destroy quantum state and are not unitary,
Fair use, Wikipedia: e.g. qubit initialisation, mid-circuit resetting, and state measurement,
https://en wikipedia.org/w/index.php?curid=3475111 and in the process we lose significant parts of quantum information.



https://en.wikipedia.org/w/index.php?curid=3475111

Classical Autoencoders
Quantum Autoencoders

Autoencoders (AE) are ML models that
encode information into a compact /
compressed form, from which approximate
information content can be decoded effectively

In the process AEs lose the infrequent,
insignificant or unwanted parts of information

Typically, an AE is implemented as a multilayer
perceptron, which includes:

o

o

AEs are used for data compression,

Input layer of N nodes of some data

AE encoder consisting of a neural network encoding

input of N nodes into a smaller n nodes

Latent layer (also known as “code”) containing °
compressed representation of input

AE decoder consisting of a neural network
recreating (decoding) input information °
Output layer of N nodes representing decompressed
information

representation, data search, denoising and °
anomaly detection, e.g. in images and signals

&

> =3
£ - — O =
& g = E @ g
= © c >
© W o 23 S > S
- < O M > o m —_
5 < -5 ) =
[ >
- In training AE O
learns to efficiently represent

a sample of data in compressed form

Quantum Autoencoders (QAE) utilise QML to implement AE
There are still few practical applications of QAEs

QAESs have the potential to assist in detection, removal or
reduction of highly complex noise and anomaly patterns

We will apply QAE to time series analysis
Some aspects of QAEs design cannot be achieved with classical ML!



QAE:

The . m0n0| ith 7 arCh itECtu Fe Restating AE principles in QML terms

of TS denoising QAE = Quantum model: a circuit of N qubits to match
time series windows of N values - this may vary

depending on the QAE architecture

Pu—— PV Optimization of ansatze parameters o Input encoder: a quantum feature map
o e ' ' embedding a window of noisy classical TS

single stage (pure+noisy data) : - 5 ;i .
Results of measurement ! values on input, thus preparing the circuit state
1

' 1
1
1 1
1 1
] Compressed data I must match encoded
! (e.9. the essence of signa) | input data! i © QAE encoder: a quantum ansatz of several
Encoded ! rmm——--—- o : ! Decoded layers consisting of trainable parameter blocks
noisy data : | latent y Meastrement  recovered pure dala and entangling blocks, evolving the state of N
T sees with nase 0.1) 1 Space ! L. ! .
— Y ! s f Y qubits into a state of n qubits (n < N)
1 1
o) I ¥ o Latent space: representing the essential
N oo oos o " features of the window embedded in the initial
- ; lo) : circuit state
— ; lo) T o . .
R _ : ! _ T o Trash space: representing information lost in
Input it S ;LZSCZ y Tramable Output QAE training, such as signal noise, it is
(@ 2 e (e.g. noise-free signal) measured and reinitialised to prevent flow of
A Lost information  jid-circuit measurement / this information to the QAE decoder

Different noise
is injected at
each training
epoch / batch

(26 Sl D) reset introduces non-

1

1

i linearity to its operation 5 QAE decoder: a quantum ansatz of several

I layers consisting of trainable parameter blocks
and entangling blocks, evolving the state of the

latent space of n qubits into a state of N qubits

R

Model training by presenting pairs of noisy and pure data

Output layer: a measurement block resulting in
classical data, which can be interpreted as a TS
window of N values with reduced noise

The “monolith” QAEs potentially have many weights, and so their training can be
computationally expensive. Therefore, we are looking for alternative designs!



y Values

Training a denoising “monolith” QTSAE

Pure data vs recovered from noisy data (data="Mackie-Glass", Gaussian noise=0.200)

Y07 lightblue dotsare - * Training denoising QTSAE
Gaussian noise used in training C0mm0n|y |nVOIVeS InJeCtIng Syn_
2] . thetic noise into clean TS data at
oo o - i each optimisation cycle
* Then we train the model by
0.75 presenting pairs of clean and
noisy TS signals
0507 * |tis often sufficient to inject
- noise of a generic distribution,
' e.g. Uniform, Poisson, Gaus-
sian, etc.
0.00 1 :
=0.25 A ®
© Noisy train (MSE 0.0199) —— True train === Recovered train (MSE 0.0100)
° MNoisy test (MSE 0.0285) — True test —=- Recovered test (MSE 0.0087')
0 1 2 3 3 5 6

Time (samples#=150; windows: size=5, step=2; windows# for: training=49, testing=24)

Jacob L. Cybulski and Sebastian Zajac (2024): "Design Considerations for Denoising Quantum Time-Series Autoencoder."
In Proc. of 24th International Conference on Computational Science (ICCS), edited by Leonardo Franco, Clélia de
Mulatier, et al, Lecture Notes in Computer Science, LNCS, vol. 14837, Part VI, 25267, July 2-4, 2024, Malaga, Spain.
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Replicating QAE with half-QAE

Let’s design a QAE to consist of encoder and decoder unitaries to have

mirror image structures, i.e. a QAE Encoder is an adjoint of a QAE Decoder!

Latent
Space

Space

Inverted
pure data

Inverted
pure data

X

Decoder

shared trained

Encoded
pure data
adjoint
Encoded
ure data .
P adjoint
p—
. - ) QS-‘
'8 g
: ie}
2%
1%}

Qubits in trash space can be reset by
measurement-with-reset - QAE is no

longer unitary; alternatively with the
SWAP operation - QAE stays unitary

EE e

(]9

(2] 9]

(2] 9]

(2] 9]

Decoded

recovered pure data

Pure time series

Decoded

recovered pure data

It is possible to improve the replication
performance by breaking the weight
symmetry, however, we are no longer
able to rely on the half-QAE training

zZero

When the latent space spans all qubits, QAE is
unitary, therefore there is no loss of information.

As the QAE Encoder is an inverse of the QAE De-
coder, hence they always cancel each other opera-
tions — regardless of their weights.

When we reset trash space, QAE is no longer
unitary and we will be destroying information
flowing from the encoder to decoder.

However, we can train the QAE Encoder / Decoder
to reduce information loss, while preserving their
mirror structure and symmetric weights.

As QAE Encoder is an adjoint of QAE Decoder,
training only QAE Decoder' is enough, e.g. by
ensuring most of its information flows through the
latent space, i.e. by converging trash to zero.

Encoded |m——————— |
pure data Latent
Space

Pure time series

\_Y_I
zero

—
=
QD
(2]
>
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Denoising TS with
Stacked half-QAEs

Encoded
pure input

Pure time series

Encoded
noisy data

‘Time series with noise (0.1)

Space

;Y_l
Zero

As noted previously,

once trained, the integrated
circuit will require to invert its
output with X on every qubit

Phase 1: As before, we train an
inverted QAE decoder using pure
data and a cost function aiming to
converge trash to zero.

Encoded

pure data
\ e e s
BE
. — -
(<5} — — -
B8 L o
= e
gg - .
g —. —@-
—ﬂ—‘ N — | [ —
| ® e

Inverted

A suitable cost function would
pure data

optimise the encoder weights to
converge output to zero

When we introduce noisy signal on input, the
replicating QAE are able to reduce signal noise by
adjusting the trash size and weights.

However, the replicating QAEs are limited!

QAE can be further improved by breaking their
weight symmetry and training them with noisy and
pure signals in two phases.

This cannot be done using
classical methods!

Phase 2: We then train a QAE encoder with noisy
data, in combination with an inverted and
previously trained QAE decoder, which will
produce an inverse of pure data approximation.

In a perfect QAE this output would cancel pure
data encoding, so we aim to converge it to zero.



Anatomy of a unitary QAE

g
measured qubits

. ) inverted inverted inverted inverted
input rotation entangling rotation entangling mid-circuit measurement / entangling rotation entangling rotation output
block block block block block or initialisation block block block block block block
e Ve ¥V A WannV A \ - A N 1 A Y A Wt Ve
Full-QAE with SWAP Trash Reset
o | N ™ i (o | . [.w] [ ) oI
( o gy |f-s3) kji g i x'_) (0.46)1 ’"J (0.13)t \
o o \ 5 \ ° o ° "
8 RY RY . = . Py RY Py RY
I & @ —a - 0E ,,
= b £ — s {2} ()
| =1
- &1+ e A = + ) )
(G 'Q RY RY RY
5 'g { 3 @ <> Q ) ® ; ; il (0.32)t }
o
[ [
= ¢ T T
£ \ \
o8 < 1 1
T3 \ \
N . \ \
\ J \ J AN J \ J
Y Y . Y Y
ansatz layer ansatz layer trash qubits are ansatz layer ansatz layer
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QAEs resetting trash qubits mid-circuit are no longer unitary, Such circuits are unitary, and so differentiable, and can be
hence not differentiable, and slow to optimise. optimised using gradient-based methods (e.g. ADAM).
Instead we can apply SWAP operations with zero initialised Note that QAE nsatze may be extended with extra qubits to

qubits, as shown here. create more trainable parameters.

extra
qubits



As unitary circuits are differentiable, therefore, they can be combined into
systems composed of quantum and classical components. For example, it is
possible to form a hybrid QAE of two quantum circuits separated by layers of
classical neural networks. Such models can be trained very efficiently!

Anatomy of Hybrid QAEs

Hybrid QAE encoder and decoder

Here is a “minimum” hybrid model...

input rotation entangling rotation entangling hybrid latent rotation entangling rotation entangling hybrid output
block block block block block space block block block block block
— Ay A YasmY, A \ A YaumY; A \—A—
" Full-QAE Input+Encoder » Full-QAE Decoder+Output \
e 7 EA = =
s | Rty ” @ S > @ % @ O "
o o 2
=) D et =
HE ® D@ ® D@ @ |3
) N () 8 = °
§ { : ¥ 8\ @ > D <> @ = >g
s |, A (=) D 2 a () D 7
k] . ) D (&) Va D (=) Y
S S A &29) @ &5 @ I;‘ )
o = D (o) any b= =
© { . i D () N D @ S +
‘5 \ J \ ) J\ )

classical
layer (PyTorch)

Y M classical M M
ansatz layer ansatz layer ansatz layer ansatz layer
layer (PyTorch)

Training of the “monolith” QAE always faces difficulties due to  QAE encoder and decoder do not need to be symmetric,

the large dimensionality of its parameter space. This was
partially addressed by training its half-QAEs separately.

Al alternative strategy is to adopt a hybrid QAE architecture,
which is organised its into a combination of classical layers
and shallow quantum layers, trained efficiently together.

However, in the process of mid-circuit measurement,
hybrid QAEs lose phase information to the detriment of their
function and effectiveness = possible quantum advantage.

e.g. here, they are not mirror images of each other.

PennyLane and PyTorch have excellent support for
manipulation of gradients, offering several highly efficient
gradient optimisers. For example, here we can adopt an
NAdam optimiser.

Note that other quantum SDKs, such as Qiskit, also provide
great gradients support used by their optimisers.



l Summary

QTSA insights

The aims of quantum time series analysis (QTSA)
is to apply principles of Quantum Machine Learn-
ing to the analysis of temporal data

QTSA applications include medical signal monit-
oring, remote sensing and forecasts, machine
condition monitoring, business forecasting and
analytics, etc

QTSA considers time as an external variable
presiding over changes in observable phenom-
ena, which are represented in and acted on by
guantum models and algorithms

QTSA needs to deal with common challenges of
temporal data, such as its high volume, tacit fea-
tures, feature dependency, homogeneity of con-
secutive values, non-local patterns, noise, an-
omalies and volatility, short life-time

QML offers many quantum models and al-
gorithms of use to QTSA tasks

QTSAE insights

QTSA algorithms rely on parameterised quantum circuits and
hybrid quantum-classical variational quantum algorithms

QTSA models typically consist of a feature map encoding data,
an ansatz of parameterised gates and measurements

QTSA TS encoding is challenging, due to limited qubit
resources, so it benefits from data reuploading / overloading

QTSA development challenges include dealing with high-
dimensional parameter space, highly entangled circuits, global
measurements and parameter initialisation strategies

QTSA high-dimensionality is its curse!

QTSA success = adopting a suitable model architecture, which
could deliver its high expressivity as well as its trainability

TS QAEs are QTSA models, which take advantage of QML
features absent from classical ML models, such as preservation
of quantum information, differentiability and reversibility of
model unitaries!



l Thank you!

Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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