

Quantum Autoencoders
Applications of QAEs to time series analysis
Advanced session with minimum instruction

Jacob L. Cybulski
Enquanted, Melbourne, Australia

Introduction to QAEs
Denoising TS QAEs
QAE architectural choices
QAE input encoding choices
QAE output / cost function choices
QAE encoder / decoder ansatze
QAE optimization / training
QAE training with noise
Conclusions
Challenge tasks

The aims of this session:

To explore and understand
Quantum Autoencoders and
their various designs

To undertake a brave, hands-
on, and independent
exploration of pure and
hybrid quantum-classical
QAEs

11-12 October 2025, QPoland, Fundacja Quantum AI

measurement

Pauli
rotations

We will assume
some knowledge of

Quantum Computing
ML and Python

Creative Commons CC BY-NC-ND

Classical Autoencoders &
Quantum Autoencoders

● Autoencoders (AE) are deep learning (DL)
models that encode information into a compact
/ compressed form, from which approximate
information content can be decoded effectively

● In the process AEs lose the infrequent,
insignificant or unwanted parts of information

● Typically, an AE is implemented as a multilayer
perceptron, which includes:
□ Input layer of N nodes of some data
□ AE encoder consisting of several neural network

layers mapping (encoding) input of N nodes into a
smaller layer of n nodes (n < N)

□ Latent layer (also known as “code”) containing
efficient representation (compressed) of input

□ AE decoder consisting of several neural network
layers recreating (decoding) input information

□ Output layer of N nodes representing decoded
(decompressed) information

● Used for data compression, representation,
data search, denoising and anomaly detection,
e.g. in images and signals

A
E

E
nc

od
er A

E
D

ecoderLa
te

n
t

La
ye

r
(n

)

In
pu

t
La

ye
r

(N
)

O
ut

pu
t L

a
ye

r
(N

)

In training AE
learns to efficiently represent

a sample of data in compressed form

● Quantum Autoencoders (QAE) utilise quantum machine
learning methods to implement AE models

● There are still few practical applications of QAEs
● QAEs have the potential to remove highly complex noise and

anomaly patterns
● QAEs can generalise data from latent space
● Training of QAEs is considered difficult, due to:

□ Semi-supervised learning (emergent latent representation)
□ Highly dimensional models (qubits, layers, params)
□ Complex measurement strategies (e.g. SWAP tests)
□ Barren plateaus potentially emerging in training

● We have great interest in QAEs because some of their design
aspects cannot be replicated with any classical methods!

Machine condition monitoring

QAEs for
TS denoising

● Challenges of quantum TS analysis:
□ There is a high volume of data
□ TS data ages quickly
□ TS values are not independent
□ Consecutive TS values are homogenous

● Benefits of quantum time series models:
□ Statistical TS analysis requires strict data preparation,

such as dimensionality reduction, aggregation,
imputation of missing values, removal of noise and
outliers, adherence to normality and homoskedasticity,
and they need to be stationary

□ QML methods are more flexible and do not have such
strict requirements, hence QAEs are promising for
effective analysis of complex temporal data!

● QAE reduction of noise in signals
is the primary objective of this session

● Sliding window protocol will be used to analyse a
small TS sub-sequence at a time

Sales of beer in USA Mean
is not constant

Variance
is not constant

Trend
is non-linear

It is not
stationary

● Time series (TS) and signal analysis aim to identify
patterns in historical time data and to create forecasts
of what data is likely to be collected in the future

● TS applications include heart monitoring, weather
forecasts, machine condition monitoring, etc.

● Time series can be univariate or multivariate
● Time series often show seasonality in data,

i.e. patterns oscillations = repeating over time

E
ar

th
qu

ak
es

sliding
window

Problem and a possible solution

Fragment of a synthetic
highly chaotic signal

True signal
(solid blue line)

Data points from
the noisy signal

Forecasts from
noisy signal

(dashed red line)

Question:
should we average
inaccurate forecasts or
should we try a model
based denoising of
forecast inaccuracies?

Another question:
what is normal and
what is abnormal?

We will develop a
TS QAE to remove high
levels of noise from
signals (past and future)

High level of noise
(Gaussian noise of 20%)

TS QAE implementation
in PennyLane

Recovered signal
from noise

(dashed blue line)

testing
data

training
data

The “monolith” architecture
of TS denoising QAE

QAEs are quantum models made of the
following components:
□ Quantum model: a circuit of N qubits to match

time series windows of N values - this may vary
depending on the QAE architecture

□ Input encoder: a quantum feature map
embedding a window of noisy classical TS
values on input, thus preparing the circuit state

□ QAE encoder: a quantum ansatz of several
layers consisting of trainable parameter blocks
and entangling blocks, evolving the state of N
qubits into a state of n qubits (n < N)

□ Latent space: representing the essential
features of the window embedded in the initial
circuit state

□ Trash space: representing information lost in
QAE training, such as signal noise, it is
measured and reinitialised to prevent flow of
this information to the QAE decoder

□ QAE decoder: a quantum ansatz of several
layers consisting of trainable parameter blocks
and entangling blocks, evolving the state of the
latent space of n qubits into a state of N qubits

□ Output layer: a measurement block resulting in
classical data, which can be interpreted as a TS
window of N values with reduced noise

Q
A

E
D

ec
od

er

|0⟩|0⟩

Q
A

E
E

nc
od

er
Latent
Space

Trash
Space

Encoded
noisy data

Decoded
recovered pure data

ze
ro

Input
(e.g. noisy signal)

Output
(e.g. noise-free signal)

Compressed data
(e.g. the essence of signal)

Lost information
(e.g. signal noise)

Trainable
ansatz

Trainable
ansatz

Measurement

Model training by presenting pairs of noisy and pure data

Optimization of ansatze parameters
Denoising “monolith” QAEsingle stage (pure+noisy data)

Different noise
is injected at
each training
epoch / batch

As the “monolith” QAE could potentially have lots of weights, its training can be
computationally very expensive. We can cleverly reorganise the process of circuit
optimisation by training the QAE encoder and QAE decoder separately. By doing so, we
can potentially gain in training speed, however, likely reducing the recovery accuracy.

Mid-circuit measurement /
reset introduces non-
linearity to its operation

Results of measurement
must match encoded
input data!

Replicating QAE with half-QAE When the latent space spans all qubits, there is no
loss of information, and so the QAE is a unitary.

As the QAE Encoder is an inverse of the QAE De-
coder, they cancel each other operations.

This means that on output the QAE will always
produce an adjoint of its input (upside-down TS).

In angle encoding, this can be corrected with a
block of X operations on each qubit.

When we reset trash space, we start losing in-
formation flowing from the encoder to decoder.

ze
ro

D
ec

od
er
†

In
 tr

ai
ni

ng

Latent
Space

Trash
Space

Encoded
pure data

ze
ro

However, we can train the QAE Encoder / Decoder
to reduce this information loss, while preserving
their mirror structure and symmetric weights.

As QAE Encoder is an adjoint of QAE Decoder,
training only QAE Decoder† is enough, e.g. by
ensuring most of its information flows through the
latent space, i.e. by converging trash to zero.

Consider an angle encoding TS QAE consisting of encoder and decoder
unitaries that have mirror image structures, i.e. a QAE Decoder and its adjoint
QAE Decoder† used as QAE Encoder.

D
ec

od
er

sh
ar

ed
 r

an
do

m

Latent
Space

Trash
Space

Encoded
pure data

Decoded
recovered pure data

ze
ro

D
ec

od
er
†

sh
ar

ed
 r

an
do

m

X

D
ec

od
er

sh
ar

ed
 tr

ai
ne

d

|0⟩|0⟩

Latent
Space

Trash
Space

Encoded
pure data

Decoded
recovered pure data

ze
ro

D
ec

od
er
†

sh
ar

ed
 tr

ai
ne

d

X

It is possible to improve the replication
performance by breaking the weight

symmetry, however, we are no longer
able to rely on the half-QAE training

Qubits in trash space can be reset by
measurement-with-reset → QAE is no

longer unitary; alternatively with the
SWAP operation → QAE stays unitary

Latent
Trash
Swap

Control / Test
Zeroes

Denoising TS with
Stacked half-QAEs

ze
ro

D
ec

od
er
†

In
 tr

ai
ni

ng

Latent
Space

Trash
Space

Encoded
pure input

ze
ro

There is a widely held belief
that replicating QAEs, which
can be trained by using only
their QAE Decoder, are capable
of reducing the signal on input
to its most essential information
and remove all infrequent, noisy
or inessential information.

This means that by feeding a
noisy signal on input it would be
possible to filter the noise out,
retaining its pure component.

However, practice shows that
replicating QAEs perform poorly
in noise reduction.

An alternative is to use all QAE
weights to their full extent.

Phase 2: Training a QAE Encoder with noisy data,
in combination with an adjoint of the previously
trained QAE Decoder, will produce an inverse of
pure data approximation. In a perfectly functioning
QAE this output would cancel pure data encoding,
which can be measured as zero.

We will train the denoising QAE in two phases.

Phase 1: Training inverted QAE Decoder using
pure data and a cost function aiming to converge
trash to zero. A common way of constructing such
a cost function is to use a SWAP test.

SWAP test ensures QAE stays unitary, this
means differentiable using the adjoint method!

SWAP test conditionally switches the state of
trash qubits with zero initialised qubits. Phase
kickback allows monitoring the state of the qubits
switching their states. Probability measurement of
the control qubit of 1.0 indicates qubits to be
identical, while 0.5 meaning them to be com-
pletely different (can translate to expval results).

Encoded
pure data

D
ec

od
er

tr
ai

ne
d

|0⟩|0⟩

Latent
Space

Trash
Space

Encoded
noisy data

ze
ro

E
nc

od
er

In
 tr

ai
ni

ng

ze
ro

Inverted
pure data

A suitable cost function would
optimise the encoder weights to

converge output to zero

As noted previously,
once trained, the integrated

circuit will require to invert its
output with X on every qubit

Anatomy of QAEs
QAE encoder and decoder

rotation
block

entangling
block

rotation
block

mid-circuit measurement /
or initialisation block

inverted
rotation
block

input
block

output
block

entangling
block

inverted
entangling

block

inverted
entangling

block

la
te

nt
 q

ub
its

tr
as

h
qu

bi
ts

en
co

di
ng

qu
bi

ts
ex

tr
a

qu
bi

ts

m
ea

su
re

d
qu

bi
ts

ansatz layer ansatz layer ansatz layer ansatz layer

QAE encoder QAE decoder

QAE encoder and decoder are often symmetric.
They are layers of parameterised rotation blocks
(e.g. Rx, Ry, Rz) and entangling blocks (e.g. Cx).
Ansatze may be extended with extra qubits to
create more trainable parameters.

The selection of the optimiser of ansatze parameters requires some
preliminary investigation of their effectiveness.
This depends on the model architecture, ansatz design, data encoding
and decoding, as well as the nature of training data.
In our project we evaluated gradient based optimisers (e.g. ADAM).

trash qubits are
being reset!

If mid-circuit measurement is used to reset trash qubits, the circuit is no
longer unitary, not differentiable, and slow to optimise. Instead we can apply
SWAP operations with zero initialised qubits, as shown here. When the circuit
uses few qubits, PennyLane replaces mid-circuit measurement with SWAP.

inverted
rotation

block

ex
tr

a
qu

bi
ts

ze
ro

 in
it

qu
bi

ts

Anatomy of Hybrid QAEs
Hybrid QAE encoder and decoder

Training of the “monolith” QAE always faces difficulties due to
the large dimensionality of its parameter space. This was
partially addressed by training its half-QAEs separately.

Al alternative strategy is to adopt a hybrid QAE architecture,
which is organised its into a combination of classical layers
and shallow quantum layers, trained efficiently together.

However, in the process of mid-circuit measurement,
hybrid QAEs lose phase information to the detriment of their
function and effectiveness = possible quantum advantage.

QAE encoder and decoder do not need to be symmetric,
e.g. here, they are not mirror images of each other.

PennyLane and PyTorch have excellent support for
manipulation of gradients, offering several highly efficient
gradient optimisers. For example, here we can adopt an
NAdam optimiser.

Note that other quantum SDKs, such as Qiskit, also provide
great gradients support used by their optimisers.

hybrid latent
space

rotation
block

entangling
block

rotation
block

rotation
block

rotation
block

input
block

hybrid output
block

ansatz layer ansatz layer ansatz layer ansatz layer

m
ea

su
re

d
qu

bi
ts

en
co

di
ng

 q
ub

its
ex

tr
a

qu
bi

ts

classical
layer (PyTorch)

entangling
block

entangling
block

entangling
block

tr
as

h
qu

bi
ts

la
te

nt
 q

ub
its

classical
layer (PyTorch)

Note that classical layers are optional, however they greatly improve the
model performance when running on a quantum simulator. They can also add
features not available in pure quantum models (e.g. nonlinearity). However,
they may prevent effective utilisation of quantum hardware.

Here is a “minimum” hybrid model...

QAE training
with noise

● The problem is that the samples may
have been obtained at different times
in different circumstances, so the sys-
tem would have difficulties learning
the features of clean and noisy sig-
nals, their relationships and the meth-
ods of transforming one into the other.

● A practical approach usually is to:
□ Collect training and test samples

of clean and noisy signals;
□ Use judgement to determine

noise distribution or its type from
the collected samples;

□ Learn how to inject noise of this
specific type into clean signals.

● Then train the model by presenting
pairs of clean signals and the same
signals but with noise injected.

● Note: It is often sufficient to inject
noise of a generic distribution, e.g.
uniform, Poisson, Gaussian, etc.

● Warning: when training a QAE model
on a fixed sample of noisy and clean
signals, the model will learn this noise
rather than its generalisation.

● Solution: create new noisy samples
at each training epoch. This way the
model will generalise from a large
number of noisy examples.

● Training QAEs capable of reducing
noise from signals is challenging.

● A typical approach to such training is
to do as follows:
□ Collect samples of noisy signals;
□ Collect samples of clean signals;
□ Train the system to convert

noisy signals into clean signals.

Summary
QAE creation and training

QAE design insights
● We have discussed QAE designs that could be

used in the development of models for signal
and time series denoising (in PennyLane).

● We have adopted a simple, yet versatile, angle
encoding of TS sliding windows. We must ensure
that our measurements return identical values.

● The “monolith” full-QAE use a traditional model
structure, it is simple to build and is accurate,
but slower to train due to high dimensionality of
its parameter space.

● The “stacked” half-QAEs use a non-conventional
approach to training, their components can be
trained independently with smaller number of
parameters, so they are efficient to train, but
may not be highly accurate.

● Hybrid quantum-classical QAEs have expanded
modelling and optimisation functions, they are
fast to train and highly accurate on simulators,
but sub-optimal of quantum machines.

● Special training is required to deal with noise.

What quantum AEs can that classical AEs cannot
● As quantum unitaries are reversible, it is possible to train only

half of the QAE to gain full-QAE functionality.
● As quantum unitaries do not lose information, it is possible to

train QAEs to flow relevant information via its latent space by
minimising information flowing into trash space.

Challenge tasks (see s04_challenge_qae notebook)
● Explore the Mackie-Glass chaotic time series
● Understand the PennyLane implementation of pure quantum

QAE, follow the instructor’s demonstration and explanation.
● Adapt the provided notebook for execution on your computer.
● Score the pure quantum QAE on training and test partitions.
● Plot the history of training vs test scores.
● Rewrite the pure quantum QAE (in PennyLane) to the

hybrid QAE model (in PennyLane + PyTorch).
● Compare pure quantum QAE vs. hybrid QAE performance.
● Improve the model performance.
● Generate 9 instances of differently initialised QAEs, and then

score them and chart the results.
● Plot the data fit (example given) for the best, median and

worst performing QAE.
● Reflect on this challenge.

https://github.com/ironfrown/qml_workshop_intro_v2

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

