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The aims of this session:
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their various designs
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Classical Autoencoders &
Quantum Autoencoders 

● Autoencoders (AE) are deep learning (DL) 
models that encode information into a compact 
/ compressed form, from which approximate 
information content can be decoded effectively

● In the process AEs lose the infrequent, 
insignificant or unwanted parts of information

● Typically, an AE is implemented as a multilayer 
perceptron, which includes:
□ Input layer of N nodes of some data
□ AE encoder consisting of several neural network 

layers mapping (encoding) input of N nodes into a 
smaller layer of n nodes (n < N)

□ Latent layer (also known as “code”) containing 
efficient representation (compressed) of input

□ AE decoder consisting of several neural network 
layers recreating (decoding) input information

□ Output layer of N nodes representing decoded 
(decompressed) information

● Used for data compression, representation, 
data search, denoising and anomaly detection, 
e.g. in images and signals
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In training AE
learns to efficiently represent

a sample of data in compressed form

● Quantum Autoencoders (QAE) utilise quantum machine 
learning methods to implement AE models

● There are still few practical applications of QAEs
● QAEs have the potential to remove highly complex noise and 

anomaly patterns
● QAEs can generalise data from latent space
● Training of QAEs is considered difficult, due to:

□ Semi-supervised learning (emergent latent representation)
□ Highly dimensional models (qubits, layers,  params)
□ Complex measurement strategies (e.g. SWAP tests)
□ Barren plateaus potentially emerging in training

● We have great interest in QAEs because some of their design 
aspects cannot be replicated with any classical methods!



  

Machine condition monitoring

QAEs for 
TS denoising

● Challenges of quantum TS analysis:
□ There is a high volume of data
□ TS data ages quickly
□ TS values are not independent 
□ Consecutive TS values are homogenous

● Benefits of quantum time series models:
□ Statistical TS analysis requires strict data preparation, 

such as dimensionality reduction, aggregation, 
imputation of missing values, removal of noise and 
outliers, adherence to normality and homoskedasticity, 
and they need to be stationary

□ QML methods are more flexible and do not have such 
strict requirements, hence QAEs are promising for 
effective analysis of complex temporal data!

● QAE reduction of noise in signals 
is the primary objective of this session

● Sliding window protocol will be used to analyse a 
small TS sub-sequence at a time

Sales of beer in USA Mean 
is not constant

Variance
is not constant

Trend
is non-linear 

It is not
stationary

● Time series (TS) and signal analysis aim to identify 
patterns in historical time data and to create forecasts 
of what data is likely to be collected in the future

● TS applications include heart monitoring, weather 
forecasts, machine condition monitoring, etc.

● Time series can be univariate or multivariate
● Time series often show seasonality in data, 

i.e. patterns oscillations = repeating over time
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Problem and a possible solution

Fragment of a synthetic 
highly chaotic signal

True signal
(solid blue line)

Data points from
the noisy signal

Forecasts from
noisy signal

(dashed red line)

Question: 
should we average 
inaccurate forecasts or 
should we try a model 
based denoising of 
forecast inaccuracies?

Another question:
what is normal and 
what is abnormal?

We will develop a 
TS QAE to remove high 
levels of noise from 
signals (past and future)

High level of noise
(Gaussian noise of 20%)

TS QAE implementation
in PennyLane 

Recovered signal 
from noise

(dashed blue line)

testing
data

training
data



  

The “monolith” architecture
of TS denoising QAE

QAEs are quantum models made of the 
following components:
□ Quantum model: a circuit of N qubits to match 

time series windows of N values - this may vary 
depending on the QAE architecture

□ Input encoder: a quantum feature map 
embedding a window of noisy classical TS 
values on input, thus preparing the circuit state

□ QAE encoder: a quantum ansatz of several 
layers consisting of trainable parameter blocks 
and entangling blocks, evolving the state of N 
qubits into a state of n qubits (n < N)

□ Latent space: representing the essential 
features of the window embedded in the initial 
circuit state

□ Trash space: representing information lost in 
QAE training, such as signal noise, it is 
measured and reinitialised to prevent flow of 
this information to the QAE decoder

□ QAE decoder: a quantum ansatz of several 
layers consisting of trainable parameter blocks 
and entangling blocks, evolving the state of the 
latent space of n qubits into a state of N qubits

□ Output layer: a measurement block resulting in 
classical data, which can be interpreted as a TS 
window of N values with reduced noise
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Input
(e.g. noisy signal)

Output
(e.g. noise-free signal)

Compressed data
(e.g. the essence of signal)

Lost information
(e.g. signal noise)

Trainable
ansatz

Trainable
ansatz

Measurement

Model training by presenting pairs of noisy and pure data

Optimization of ansatze parameters
Denoising “monolith” QAEsingle stage (pure+noisy data)

Different noise 
is injected at 
each training 
epoch / batch

As the “monolith” QAE could potentially have lots of weights, its training can be 
computationally very expensive. We can cleverly reorganise the process of circuit 
optimisation by training the QAE encoder and QAE decoder separately. By doing so, we 
can potentially gain in training speed, however, likely reducing the recovery accuracy.

Mid-circuit measurement / 
reset introduces non-
linearity to its operation

Results of measurement 
must match encoded 
input data!



  

Replicating QAE with half-QAE When the latent space spans all qubits, there is no 
loss of information, and so the QAE is a unitary.

As the QAE Encoder is an inverse of the QAE De-
coder, they cancel each other operations.

This means that on output the QAE will always 
produce an adjoint of its input (upside-down TS).

In angle encoding, this can be corrected with a 
block of X operations on each qubit.

When we reset trash space, we start losing in-
formation flowing from the encoder to decoder.
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However, we can train the QAE Encoder / Decoder 
to reduce this information loss, while preserving 
their mirror structure and symmetric weights.

As QAE Encoder is an adjoint of QAE Decoder, 
training only QAE Decoder† is enough, e.g. by 
ensuring most of its information flows through the 
latent space, i.e. by converging trash to zero.

Consider an angle encoding TS QAE consisting of encoder and decoder 
unitaries that have mirror image structures, i.e. a QAE Decoder and its adjoint 
QAE Decoder† used as QAE Encoder.
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It is possible to improve the replication 
performance by breaking the weight 

symmetry, however, we are no longer 
able to rely on the half-QAE training

Qubits in trash space can be reset by 
measurement-with-reset → QAE is no 

longer unitary; alternatively with the 
SWAP operation → QAE stays unitary



  

Latent
Trash
Swap

Control / Test
Zeroes

Denoising TS with 
Stacked half-QAEs
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There is a widely held belief 
that replicating QAEs, which 
can be trained by using only 
their QAE Decoder, are capable 
of reducing the signal on input 
to its most essential information 
and remove all infrequent, noisy 
or inessential information. 

This means that by feeding a 
noisy signal on input it would be 
possible to filter the noise out, 
retaining its pure component.

However, practice shows that 
replicating QAEs perform poorly 
in noise reduction.

An alternative is to use all QAE 
weights to their full extent.

Phase 2: Training a QAE Encoder with noisy data, 
in combination with an adjoint of the previously 
trained QAE Decoder, will produce an inverse of 
pure data approximation. In a perfectly functioning 
QAE this output would cancel pure data encoding, 
which can be measured as zero.

We will train the denoising QAE in two phases.

Phase 1: Training inverted QAE Decoder using 
pure data and a cost function aiming to converge 
trash to zero. A common way of constructing such 
a cost function is to use a SWAP test.

SWAP test ensures QAE stays unitary, this 
means differentiable using the adjoint method!

SWAP test conditionally switches the state of 
trash qubits with zero initialised qubits. Phase 
kickback allows monitoring the state of the qubits 
switching their states. Probability measurement of 
the control qubit of 1.0 indicates qubits to be 
identical, while 0.5 meaning them to be com-
pletely different (can translate to expval results).
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A suitable cost function would 
optimise the encoder weights to 

converge output to zero

As noted previously,
once trained, the integrated 

circuit will require to invert its 
output with X on every qubit



  

Anatomy of QAEs
QAE encoder and decoder

rotation
block

entangling
block

rotation
block

mid-circuit measurement / 
or initialisation block
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ansatz layer ansatz layer ansatz layer ansatz layer

QAE encoder QAE decoder

QAE encoder and decoder are often symmetric.
They are layers of parameterised rotation blocks 
(e.g. Rx, Ry, Rz) and entangling blocks (e.g. Cx).
Ansatze may be extended with extra qubits to 
create more trainable parameters.

The selection of the optimiser of ansatze parameters requires some 
preliminary investigation of their effectiveness.
This depends on the model architecture, ansatz design, data encoding 
and decoding, as well as the nature of training data.
In our project we evaluated gradient based optimisers (e.g. ADAM).

trash qubits are 
being reset!

If mid-circuit measurement is used to reset trash qubits, the circuit is no 
longer unitary, not differentiable, and slow to optimise. Instead we can apply 
SWAP operations with zero initialised qubits, as shown here. When the circuit 
uses few qubits, PennyLane replaces mid-circuit measurement with SWAP.
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Anatomy of Hybrid QAEs
Hybrid QAE encoder and decoder

Training of the “monolith” QAE always faces difficulties due to 
the large dimensionality of its parameter space. This was 
partially addressed by training its half-QAEs separately.

Al alternative strategy is to adopt a hybrid QAE architecture, 
which is organised its into a combination of classical layers 
and shallow quantum layers, trained efficiently together.

However, in the process of mid-circuit measurement, 
hybrid QAEs lose phase information to the detriment of their 
function and effectiveness = possible quantum advantage.

QAE encoder and decoder do not need to be symmetric, 
e.g. here, they are not mirror images of each other.

PennyLane and PyTorch have excellent support for 
manipulation of gradients, offering several highly efficient 
gradient optimisers. For example, here we can adopt an 
NAdam optimiser.

Note that other quantum SDKs, such as Qiskit, also provide 
great gradients support used by their optimisers.
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Note that classical layers are optional, however they greatly improve the 
model performance when running on a quantum simulator. They can also add 
features not available in pure quantum models (e.g. nonlinearity). However, 
they may prevent effective utilisation of quantum hardware.

Here is a “minimum” hybrid model...



  

QAE training
with noise

● The problem is that the samples may 
have been obtained at different times 
in different circumstances, so the sys-
tem would have difficulties learning 
the features of clean and noisy sig-
nals, their relationships and the meth-
ods of transforming one into the other.

● A practical approach usually is to:
□ Collect training and test samples

of clean and noisy signals;
□ Use judgement to determine

noise distribution or its type from 
the collected samples;

□ Learn how to inject noise of this 
specific type into clean signals.

● Then train the model by presenting 
pairs of clean signals and the same 
signals but with noise injected.

● Note: It is often sufficient to inject 
noise of a generic distribution, e.g. 
uniform, Poisson, Gaussian, etc.

● Warning: when training a QAE model 
on a fixed sample of noisy and clean 
signals, the model will learn this noise 
rather than its generalisation.

● Solution: create new noisy samples 
at each training epoch. This way the 
model will generalise from a large 
number of noisy examples.

● Training QAEs capable of reducing 
noise from signals is challenging.

● A typical approach to such training is 
to do as follows:
□ Collect samples of noisy signals;
□ Collect samples of clean signals;
□ Train the system to convert 

noisy signals into clean signals.



  

Summary
QAE creation and training

QAE design insights
● We have discussed QAE designs that could be 

used in the development of models for signal 
and time series denoising (in PennyLane).

● We have adopted a simple, yet versatile, angle 
encoding of TS sliding windows. We must ensure 
that our measurements return identical values.

● The “monolith” full-QAE use a traditional model 
structure, it is simple to build and is accurate, 
but slower to train due to high dimensionality of 
its parameter space.

● The “stacked” half-QAEs use a non-conventional 
approach to training, their components can be 
trained independently with smaller number of 
parameters, so they are efficient to train, but 
may not be highly accurate.

● Hybrid quantum-classical QAEs have expanded 
modelling and optimisation functions, they are 
fast to train and highly accurate on simulators, 
but sub-optimal of quantum machines.

● Special training is required to deal with noise.

What quantum AEs can that classical AEs cannot
● As quantum unitaries are reversible, it is possible to train only 

half of the QAE to gain full-QAE functionality.
● As quantum unitaries do not lose information, it is possible to 

train QAEs to flow relevant information via its latent space by 
minimising information flowing into trash space.

Challenge tasks (see s04_challenge_qae notebook)
● Explore the Mackie-Glass chaotic time series
● Understand the PennyLane implementation of pure quantum 

QAE, follow the instructor’s demonstration and explanation.
● Adapt the provided notebook for execution on your computer.
● Score the pure quantum QAE on training and test partitions.
● Plot the history of training vs test scores.
● Rewrite the pure quantum QAE (in PennyLane) to the 

hybrid QAE model (in PennyLane + PyTorch).
● Compare pure quantum QAE vs. hybrid QAE performance.
● Improve the model performance.
● Generate 9 instances of differently initialised QAEs, and then 

score them and chart the results.
● Plot the data fit (example given) for the best, median and 

worst performing QAE.
● Reflect on this challenge.

https://github.com/ironfrown/qml_workshop_intro_v2



  

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.
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