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Classical Autoencoders
Quantum Autoencoders

Autoencoders (AE) are deep learning (DL)
models that encode information into a compact
/ compressed form, from which approximate
information content can be decoded effectively

In the process AEs lose the infrequent,
insignificant or unwanted parts of information o

Typically, an AE is implemented as a multilayer
perceptron, which includes: o

o Input layer of N nodes of some data °

= AE encoder consisting of several neural network
layers mapping (encoding) input of N nodes into a
smaller layer of n nodes (n < N) @

= Latent layer (also known as “code”) containing
efficient representation (compressed) of input

= AE decoder consisting of several neural network
layers recreating (decoding) input information

= Output layer of N nodes representing decoded
(decompressed) information

Used for data compression, representation,
data search, denoising and anomaly detection,
e.g. in images and signals
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learns to efficiently represent
a sample of data in compressed form

Quantum Autoencoders (QAE) utilise quantum machine
learning methods to implement AE models

There are still few practical applications of QAEs

QAEs have the potential to remove highly complex noise and
anomaly patterns

QAESs can generalise data from latent space
Training of QAESs is considered difficult, due to:

= Semi-supervised learning (emergent latent representation)
= Highly dimensional models (qubits, layers, params)

o Complex measurement strategies (e.g. SWAP tests)

o Barren plateaus potentially emerging in training

We have great interest in QAEs because some of their design
aspects cannot be replicated with any classical methods!
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Time series (TS) and signal analysis aim to identify
patterns in historical time data and to create forecasts
of what data is likely to be collected in the future

TS applications include heart monitoring, weather
forecasts, machine condition monitoring, etc.

Time series can be univariate or multivariate

Time series often show seasonality in data,
l.e. patterns oscillations = repeating over time
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Challenges of quantum TS analysis:

O There is a high volume of data

O TS data ages quickly

O TS values are not independent

O Consecutive TS values are homogenous

Earthquakes

Benefits of quantum time series models:

O Statistical TS analysis requires strict data preparation,
such as dimensionality reduction, aggregation,
imputation of missing values, removal of noise and
outliers, adherence to normality and homoskedasticity,
and they need to be stationary

O QML methods are more flexible and do not have such
strict requirements, hence QAESs are promising for
effective analysis of complex temporal data!

® QAE reduction of noise in signals
is the primary objective of this session

e Sliding window protocol will be used to analyse a
small TS sub-sequence at a time



l Problem and a possible solution

Target value

Pure data vs recovered from noisy data (data="mackey glass tau30 n200", noise nhorm=0.200, avg=0.098)
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Question:

should we average
inaccurate forecasts or
should we try a model
based denoising of
forecast inaccuracies?

Another question:
what is normal and
what is abnormal?

We will develop a

TS QAE to remove high
levels of noise from
signals (past and future)

TS QAE implementation
in PennylLane



QAEs are quantum models made of the

The “mOnO“th" arChitECture following components:

of TS denoising QAE ° Quantum model: a circuit of N qubits to match
time series windows of N values - this may vary
depending on the QAE architecture

Optimization of ansatze parameters 5
Denoising “monolith” QAE =~ === =====-======----~- P coooooonos I
single stage (pure+noisy data)

Input encoder: a quantum feature map
embedding a window of noisy classical TS

Results of measurement values on input, thus preparing the circuit state

must match encoded
input data! - ©  QAE encoder: a quantum ansatz of several

becoded layers consisting of trainable parameter blocks

Compressed data
(e.g. the essence of signal)
Encoded
Measurement  recovered pure data

noisy data ' Latent : ; .
| Space | and entangling blocks, evolving the state of N
— i ; qubits into a state of n qubits (n < N)
1
° ————mm - - - = Latent space: representing the essential
N .““"“‘, features of the window embedded in the initial
— 0 . .
. circuit state
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e D T ' Trainable Trash space: representing mforr_natlc_)n_ lost in
Input e ' Space 1 ansaz Output QAE training, such as signal noise, it is
(e.g. noisy signal) o ) (e.g. noise-free signal) e e e
) _ measured and reinitialised to prevent flow of
A Lost information  pjjd-circuit measurement /

Different noise this information to the QAE decoder

is injected at
each training
epoch / batch

(26 Sl D) reset introduces non-
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! linearity to its operation = QAE decoder: a quantum ansatz of several

! layers consisting of trainable parameter blocks
and entangling blocks, evolving the state of the

latent space of n qubits into a state of N qubits

R

Model training by presenting pairs of noisy and pure data

As the “monolith” QAE could potentially have lots of weights, its training can be

computationally very expensive. We can cleverly reorganise the process of circuit ° Output layer: a measurement block resulting in
optimisation by training the QAE encoder and QAE decoder separately. By doing so, we classical data, which can be interpreted as a TS
can potentially gain in training speed, however, likely reducing the recovery accuracy. window of N values with reduced noise
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QAE Decoder’ used as QAE Encoder.

Encoded
pure data

Pure time st

Encoded
pure data

Pure time series

Decoder’
shared trained

Space

250
range

Qubits in trash space can be reset by
measurement-with-reset - QAE is no

longer unitary; alternatively with the
SWAP operation - QAE stays unitary

Decoder

shared trained

Replicating QAE with half-QAE

Consider an angle encoding TS QAE consisting of encoder and decoder
unitaries that have mirror image structures, i.e. a QAE Decoder and its adjoint

Decoded
recovered pure data

Pure time series
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Decoded
recovered pure data

It is possible to improve the replication
performance by breaking the weight
symmetry, however, we are no longer
able to rely on the half-QAE training

zZero

When the latent space spans all qubits, there is no
loss of information, and so the QAE is a unitary.

As the QAE Encoder is an inverse of the QAE De-
coder, they cancel each other operations.

This means that on output the QAE will always
produce an adjoint of its input (upside-down TS).

In angle encoding, this can be corrected with a
block of X operations on each qubit.

When we reset trash space, we start losing in-
formation flowing from the encoder to decoder.

Encoded |mm—————— |
pure data Latent
Space

\_Y_I
zero

—
=
QD
2]
>

However, we can train the QAE Encoder / Decoder
to reduce this information loss, while preserving
their mirror structure and symmetric weights.

As QAE Encoder is an adjoint of QAE Decoder,
training only QAE Decoder' is enough, e.g. by
ensuring most of its information flows through the
latent space, i.e. by converging trash to zero.
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Denoising TS with

Stacked half-QAEs

Encoded

pure input

Encoded
noisy data

ime series with noise (0.1)

Space
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As noted previously,

once trained, the integrated
circuit will require to invert its
output with X on every qubit

;Y_l
Zero

Decoder
trained
zero

Inverted
pure data

There is a widely held belief
that replicating QAES, which
can be trained by using only
their QAE Decoder, are capable
of reducing the signal on input
to its most essential information
and remove all infrequent, noisy
or inessential information.

This means that by feeding a
noisy signal on input it would be
possible to filter the noise out,
retaining its pure component.

However, practice shows that
replicating QAEs perform poorly
in noise reduction.

An alternative is to use all QAE
weights to their full extent.

Encoded
pure data

Pure time series
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A suitable cost function would
optimise the encoder weights to
converge output to zero

We will train the denoising QAE in two phases.

Phase 1: Training inverted QAE Decoder using
pure data and a cost function aiming to converge
trash to zero. A common way of constructing such
a cost function is to use a SWAP test.

SWAP test ensures QAE stays unitary, this
means differentiable using the adjoint method!

SWAP test conditionally switches the state of
trash qubits with zero initialised qubits. Phase
kickback allows monitoring the state of the qubits
switching their states. Probability measurement of
the control qubit of 1.0 indicates qubits to be
identical, while 0.5 meaning them to be com-
pletely different (can translate to expval results).
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Phase 2: Training a QAE Encoder with noisy data,
in combination with an adjoint of the previously
trained QAE Decoder, will produce an inverse of
pure data approximation. In a perfectly functioning
QAE this output would cancel pure data encoding,
which can be measured as zero.
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Anatomy of QAEs

QAE encoder and decoder

If mid-circuit measurement is used to reset trash qubits, the circuit is no
longer unitary, not differentiable, and slow to optimise. Instead we can apply
SWAP operations with zero initialised qubits, as shown here. When the circuit
uses few qubits, PennylLane replaces mid-circuit measurement with SWAP.
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QAE encoder and decoder are often symmetric.

They are layers of parameterised rotation blocks
(e.g. Rx, Ry, Rz) and entangling blocks (e.g. Cx).

Ansatze may be extended with extra qubits to
create more trainable parameters.

Y
QAE decoder
The selection of the optimiser of ansatze parameters requires some
preliminary investigation of their effectiveness.

This depends on the model architecture, ansatz design, data encoding
and decoding, as well as the nature of training data.

In our project we evaluated gradient based optimisers (e.g. ADAM).

measured qubits

extra
qubits



Note that classical layers are optional, however they greatly improve the
model performance when running on a quantum simulator. They can also add
features not available in pure quantum models (e.g. nonlinearity). However,
they may prevent effective utilisation of quantum hardware.

Anatomy of Hybrid QAEs

Hybrid QAE encoder and decoder

Here is a “minimum” hybrid model...
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layer (PyTorch)

Training of the “monolith” QAE always faces difficulties due to  QAE encoder and decoder do not need to be symmetric,

the large dimensionality of its parameter space. This was
partially addressed by training its half-QAEs separately.

Al alternative strategy is to adopt a hybrid QAE architecture,
which is organised its into a combination of classical layers
and shallow quantum layers, trained efficiently together.

However, in the process of mid-circuit measurement,
hybrid QAEs lose phase information to the detriment of their
function and effectiveness = possible quantum advantage.

e.g. here, they are not mirror images of each other.

PennyLane and PyTorch have excellent support for
manipulation of gradients, offering several highly efficient
gradient optimisers. For example, here we can adopt an
NAdam optimiser.

Note that other quantum SDKs, such as Qiskit, also provide
great gradients support used by their optimisers.



* Training QAEs capable of reducing ®* The problem is that the samples may

QAE tra I n I n g noise from signals is challenging. have been obtained at different times

e Atypical roach h training i in different circum§tgnc¢s, o] thg sys-
typical approach fo such training Is tem would have difficulties learning

W It h n O I Se to do as follows: the features of clean and noisy sig-

= Collect samples of noisy signals; nals, their relationships and the meth-
= Collect samples of clean signals; ods of transforming one into the other.
° Train the system to convert * Anpractical approach usually is to:

noisy signals into clean signals. .
y sl g o Collect training and test samples

Pure data vs recovered from noisy data (data="Mackie-Glass", Gaussian noise=0.200) of clean and noisy signals;

150 1 Lt blue dots are " Use jud_gemen_t to de;termine
Gaussian noise used in training noise distribution or its type from
125 | the collected samples;
¢ o Learn how to inject noise of this
1.00 - o i o o'l specific type into clean signals.

® Then train the model by presenting
pairs of clean signals and the same

0.75 4 . . . .
. signals but with noise injected.
[*]
§ 0.50 - * Note: Itis often sufficient to inject
> noise of a generic distribution, e.g.
025 - uniform, Poisson, Gaussian, etc.

* Warning: when training a QAE model
0.00 on a fixed sample of noisy and clean
signals, the model will learn this noise
sy i rather than its generalisation.

© Noisy train (MSE 0.0199) —— True train === Recovered train (MSE 0.0100) ° - . :
° Noisy test (MSE 0.0285) —— True test —=- Recovered test (MSE 0.0087') Solution: create new noisy samples

. : , - : . at each training epoch. This way the

0 ! 2 _ s _ IV > B model will generalise from a large
Time (samples#=150; windows: size=5, step=2; windows# for: training=49, testing=24) number of noisy examples.




Summary

QAE creation and training

QAE design insights

We have discussed QAE designs that could be
used in the development of models for signal
and time series denoising (in PennyLane).

We have adopted a simple, yet versatile, angle
encoding of TS sliding windows. We must ensure
that our measurements return identical values.

The “monolith” full-QAE use a traditional model
structure, it is simple to build and is accurate,
but slower to train due to high dimensionality of
its parameter space.

The “stacked” half-QAEs use a non-conventional
approach to training, their components can be
trained independently with smaller number of
parameters, so they are efficient to train, but
may not be highly accurate.

Hybrid quantum-classical QAEs have expanded
modelling and optimisation functions, they are
fast to train and highly accurate on simulators,
but sub-optimal of quantum machines.

Special training is required to deal with noise.

What quantum AEs can that classical AEs cannot

As quantum unitaries are reversible, it is possible to train only
half of the QAE to gain full-QAE functionality.

As quantum unitaries do not lose information, it is possible to
train QAEs to flow relevant information via its latent space by
minimising information flowing into trash space.

Challenge tasks (see s04 challenge _gae notebook)

Explore the Mackie-Glass chaotic time series

Understand the PennyLane implementation of pure quantum
QAE, follow the instructor’'s demonstration and explanation.

Adapt the provided notebook for execution on your computer.
Score the pure quantum QAE on training and test partitions.
Plot the history of training vs test scores.

Rewrite the pure quantum QAE (in PennyLane) to the
hybrid QAE model (in PennyLane + PyTorch).

Compare pure quantum QAE vs. hybrid QAE performance.
Improve the model performance.

Generate 9 instances of differently initialised QAEs, and then
score them and chart the results.

Plot the data fit (example given) for the best, median and
worst performing QAE.

Reflect on this challenge.

https://github.com/ironfrown/qml_workshop_intro_v2



l Thank you!

Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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