
 1 / 12

Quantum Machine Learning
Quantum classification with a gentle introduction to
PennyLane + PyTorch integration

Jacob L. Cybulski
Enquanted, Melbourne, Australia

QML classification models
Classical vs quantum classification
Class imbalance in quantum
PennyLane meets PyTorch
Wrapping quantum models

in PyTorch layers
PennyLane / PyTorch

seamless integration
Grid search
Quantum vs classical results
Adjusting the threshold
Barriers to quantum classification
PenyLane demo

11-12 October 2025, QPoland, Fundacja Quantum AI

Secrets revealed in this session:

To look behind the doors of
quantum classification!

measurement

Pauli
rotations

We will assume
some knowledge of

Quantum Computing
ML and Python

Creative Commons CC BY-NC-ND

 2 / 12

Classical classification /
Quantum classification

Class of a data sample is a group defined by a unique
nominal value of one of its attributes. For instance
vehicles can be grouped by:

● Colour, such as “red”, “yellow” or “green”
● Size, e.g. “small”, “medium” or “large”

Classification is the process of classifying data
samples based on their attribute values, i.e. deciding
what class value should be given to their label attribute,
with a view to determine the membership of a sample in
a particular group:

● Vehicles type, such as “sedan” or “truck”, which
can be predicted from other attributes, e.g. size
and colour

Classifier is a model predicting the class of a sample,
and capable of automating classification of data
recorded in the future.

Examples where quantum ML outperformed classical ML:
(1) high dimensional feature spaces, (2) dimensionality reduction,
(3) sampling from complex distributions, (4) simulation of chemical
properties and reactions, (5) quantum Monte Carlo methods, etc.

Classical machine learning offers numerous models and
algorithms for highly efficient classification. Their quantum
counterparts are still in research phase.

 3 / 12

Data preparation for classification
Class imbalance and preparation of predictors

Due to limited qubit resources,
quantum classifiers are sensitive to
class imbalance!

Often we have a minority class
(very small) of positive examples
(important to us).

In cases of the class imbalance,
we cannot trust accuracy as it can
be high even though the most, or
all, positive examples are
misclassified. What can we do?

In cases of class imbalance, some
classifiers may produce results
biased towards the majority class.

The solution may involve
rebalancing data sample by either:

● over-sampling the minority class or
● under-sampling the majority class.

Balancing of training data may lead
to a better model.

However, balancing of test data
leads to incorrect accuracy.

It is best to balancing training data
and to use the unbalanced data for
validation and testing.

SMOTE or Synthetic Minority
Oversampling Technique
is one of the most commonly used
technique for class oversampling.

SMOTE creates synthetic (not real)
data points in the smallest label
class. And you can perform SMOTE
balancing iteratively for all classes.

However, in some circumstances,
some models can easily deal with
unbalanced samples.

In which case, by balancing data the
model performance may drop!

Always test if sample balancing
actually improves the model
performance or not.

Weighing data examples (by inverse
of class frequency) is an alternative
approach in classical ML. In training
with weighing, e.g. weights are used
to penalise majority class examples.

PyTorch-Ignite, “CohenKappa”,
https://pytorch.org/ignite/generated/ignite.metrics.CohenKappa.html

Imbalanced-learn, “SMOTE”,
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

All previously mentioned concerns
about analysis and preparation of
predictors are still applicable to
quantum classification.

We cannot rely on the
accuracy alone, we
must also analyse our
failures, e.g. check
● Sensitivity: the propor-

tion of correctly identi-
fied true positives

● Specificity: the propor-
tion of correctly identi-
fied true negatives

We can also use
Cohen kappa statistic,
which adjusts accuracy
based on the distribu-
tion of class values.
● Kappa > 0.6

is considered good!
● High accuracy but

low kappa is poor!

https://pytorch.org/ignite/generated/ignite.metrics.CohenKappa.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

 4 / 12

Priors and classification

Another way is to balance all data, for training and
validation, but then recalculate validation results.

The class probability distribution in the population is
called prior probability (or priors).

Let’s say we have 900 examples, split 2:1 between
negative vs positive cases, we are interested in positives.

If we trained a model on this data, it will favour the
negative cases, it will over-train on them.

We can resample data (e.g. under-sample the negatives).

Now we have balanced data, better for model training.

We then validate the model and let us say we found 50%
of negatives and 25% of positives to be misclassified.

Our misclassification rate is: 0.25+0.125=0.375

However, if we deploy the model to work with the
population data we can expect a very different result – we
need to scale this result to reflect the proportions In the
population, i.e. 2:1 (not 1:1).

The new misclassification rate is 1/3+0.25x1/3=0.417

Detection rate of positive cases TP/FN is the same.

The cost of handling negative cases went up.

2/3 1/3

YesNo

Population

1/2 1/2

YesNo

Balanced Sample

1/2 1/2

YesNo

TN

TP

FP FN

Misclassification
In the balanced

sample

2/3 1/3

YesNo

TN TP

FN

FP

Misclassification
In the population

FN

FPTN

TP

Confusion Matrix: Population

Predicted
No

Predicted
Yes

True
No

True
Yes

FN

FP

TN

TP

Confusion Matrix: Sample

Predicted
No

Predicted
Yes

True
No

True
Yes

FP

Some data mining software can perform these calculations automatically,

 5 / 12

PennyLane / PyTorch
Neural network structure

The structure of a PyTorch classic model is almost identical to
that of a PyTorch model with a quantum model as it layer!
What is different is the specification of their layers.

PyTorch with
PennyLane layer

Pure PyTorch

Both models are designed as
PyTorch neural net classes.

Both initialise their model
instances by saving the most
important parameters (self),

and then creating and saving
their models (self.model) as

sequences of layers.

Both define and create neural
network layers. The quantum
model’s QNode with its shape

details was wrapped in a
TorchLayer. The QNode was

created with a “torch” interface
and a device specified via

parameters.

Both models identify the
forward function, which
provides a method of

calculating outputs from
inputs.

 6 / 12

PennyLane / PyTorch
Model training

Training
of PyTorch NN with
a PennyLane layer

Training
of Pure PyTorch NN

Both models are trained in the same way.
PyTorch has no knowledge of the two

models differences!

The training function receives data (X and y),
cost and accuracy calculating functions, the
optimiser, the required number of training

epochs, and other variables used during the
process.

Model training starts with the initialisation of
lists to collect training cost and accuracy at

each optimisation step.

Then the model training starts.

Training is conducted in a loop utilising
gradients in the model weights.

First, the optimiser is instructed to
reinitialise its gradients.

Second, it performs the forward step
by applying the model to data (X) to

receive the model predictions on output.
Third, the predictions are compared

with the expected values (y) and
the cost of differences is calculated.

Fourth, the optimiser takes a backward
step to recalculate all model weights.
Fifth, the optimiser then prepares for

the next optimisation step.
Finally, we collect all performance

indicators and print the partial results.

Invocation of the
PennyLane model training

 7 / 12

In search of the optimum
Grid search

● The performance of a quantum classifier depends on the
combination of its circuit characteristics, e.g.

– the number of qubits and the number of layers
● as well as the hyper-parameters of the optimiser and its

training process, e.g.
– the learning rate and the number of epochs
– the optimiser in use, e.g. SGD, RMSprop, Adam

● We tune the model by experimenting with all of these
training process hyper-parameters.

● Trial and error is a possible approach!
However, a systematic approach is always preferred!

● For a single parameter, a feasible approach is to construct
a loop over a list of hyper-parameter values and then log,
chart and review the performance indicators.

● Scikit-learn and PyTorch (via skorch) provide support
(via its operators) for the systematic exploration of multiple
model parameters in a grid search.

● There are two possible ways of exploring
multiple parameter values, i.e. with:

– Grid search of parameter values, where for
each parameter we supply a list of its
possible values and we test the model on all
their combinations – most commonly used
and easy to implement;

– Random grid search, where test points are
generated randomly, each having a
combination of (most likely) unique
parameter values – fewer tests and yet better
coverage of parameter values.

Important parameter p1

U
n

im
p

o
rt

a
n

t
p

a
ra

m
e

te
r

p
2

Important parameter p1

U
n

im
p

o
rt

a
n

t
p

a
ra

m
e

te
r

p
2

Grid Layout
(16 tests)

Random Layout
(12 tests)

Error
Surface

The collection of parameters may include the more important
parameters, which may be better at identifying distinguishing
features of the error surface than unimportant parameters.

Scikit Learn, “Tuning the hyper-parameters of an estimator”,
https://scikit-learn.org/stable/modules/grid_search.html

Adrian Tam, “How to Grid Search Hyperparameters for PyTorch Models”,
https://machinelearningmastery.com/how-to-grid-search-hyperparameters-for-pytorch-models/

https://scikit-learn.org/stable/modules/grid_search.html
https://machinelearningmastery.com/how-to-grid-search-hyperparameters-for-pytorch-models/

 8 / 12

PennyLane / PyTorch
Results

Model scoring and plotting
of results is also identical!

As we are training with small
data sets, the classical
“plain vanilla” PyTorch
models tend to quickly

overtrain.

There is a lot more tuning
required of the quantum
model but its plots are
also more beautiful!

Performance plots
from training classical
models look as if they
were produced by a

very nervous but very
successful gambler!

Note that IMHO
if a quantum model on

simple data
exceeds the performance

of a classical model,
it usually means that you

have not tuned it properly!

Sadly,
this is the case here!

PyTorch with
PennyLane layerPure PyTorch

Cost (MSE) Cost (MSE)

Accuracy

Accuracy

 9 / 12

Binomial classification
Adjusting the threshold

• Assume we have two classes - positive and negative.
• When a positive class is correctly classified, it is

called true-positive (TP), the negative class is called
true-negative (TN).

• When a positive class is incorrectly classified it is
called false-negative (FN), the incorrectly classified
negative class is called false-positive (FP).

• The prediction is defined by confidence factors, i.e.
when the confidence of a positive class is greater
than a certain threshold, (e.g. 0.5), it is concluded
that classification is positive, else it is negative.

• The threshold can be changed to maximise some
performance indicator (e.g. the car is risky).

Consider these 20 data points, classified with different
confidence factors from 0 to 1. Depending on the threshold
they will be classified differently and the classifier
performance will also be different.

We can visualise the classifier performance by plotting an
ROC (Receiver Operating Characteristic) chart of all
possible pairs of FP rate vs TP rate when varying the
threshold (see below). It is often considered that the “best”
classifier has the largest area under the curve (AUC).

AUC: area
under the

curve

(1-specificity)

(s
en

si
tiv

ity
)

Scikit Learn, “Tuning the decision threshold for class prediction”,
https://scikit-learn.org/stable/modules/classification_threshold.html

FPR

TPR

0.30 th

0.75 th

TPR = TP / P
FPR = FP / N

However, AUC should not be used
as a sole criterion for classifier
selection. From a decision making
viewpoint, we are not interested in a
model which is good for all possible
thresholds. Instead, we are
interested in a model with a single
specific threshold that supports the
most effective decision making!

https://scikit-learn.org/stable/modules/classification_threshold.html

 10 / 12

Barriers to quantum classification

Some Problems Possible Solutions
Poorly chosen embeddings can lead to
loss of information or biases.

● Avoid simple embeddings for complex data (e.g., basic angle encoding), as
they may not capture nonlinear relationships.

● Consider trainable embeddings (e.g., quantum neural networks).

Quantum models are sensitive to
imbalanced data, due to limited qubit
resources.

● Oversampling or hybrid classical-quantum approaches may be needed.

Since classifiers rely on discrete decision
boundaries, barren plateaus can lead to
random guessing behaviour.

● Regularisation may help (via classical post-processing).

Quantum classifiers can overfit due to
limited training data or excessive circuit
expressivity.

● Use dimensionality reduction (e.g., PCA) before encoding or employ classical
regularisation (e.g., dropout in hybrid models).

Quantum classifiers might appear to work
well on training data but fail on test data due
to quantum-specific artefacts,

● Always compare against classical models and their performance (e.g., SVM,
neural networks). Quantum advantage is rare!

 11 / 12

PennyLane Demo
Engineer quantum solutions!

PennyLane Demo:
● Explore insurance risk data
● Consider class order and the need for shuffling
● Reduce your data dimensionality (test and compare)
● Play with hyper-parameters to improve performance
● Apply the best model to new data

Key takeaways:
● Quantum modelling is an engineering task
● There is more to success than a clever model
● Data encoding is (again) crucial to performance
● Dimensionality reduction is crucial to performance
● Design your model tests – use grid search!
● Experiment with the ansatz parameters
● Learn from classical ML how to measure accuracy
● Think about class imbalance
● Once model is trained, you can still improve accuracy!

Dataset 1: Automobile risk assessment

Dataset 2: Sonar

Image source: Unsplash and Freepik

 12 / 12

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

