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Classical classification /

Quantum Classification Models vs. Classical Counterparts

= gm - Classical .
Q u antu m c I aSS Ifl catl 0 n " Quantum Version Status Key Challenges
odel
Logistic' QUént.um - Implemented (Qiskit, Limited qubit scalability
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. . . . Quantum Kernel Working prototypes Kernel computation on
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) ! " g Trees Trees hard to train) quantum (NISQ) limitations
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o . . . Random Not directly N/A (ensemble Quantum parallelism # classical
CIaSS'flcat'on IS the prOCGISS Of ClﬂSSlfylng data_ . Forest applicable methods not portable) boosting
samples based on their attribute values, i.e. deciding l
what class value should be given to their label attribute, ::::orks Quantum Neural Early-stage (e.g., Barren plateaus, training
with a view to determine the membership of a sample in NN Networks (QNN) QCNNs) difficulties
a particular group:
. B — i : Quantum k-NN Proof-of- t Requires QRAM (not yet
Vehicles type, such as “sedan” or “truck”, which NN e oo eI s SR
A . . (distance-based) (small datasets) practical)
can be predicted from other attributes, e.g. size _ R
and COlOUf Naive Bayes Quantum Bayesian Theoretical Probabilistic circuits are
. . .. Networks complex
Classifier is a model predicting the class of a sample,
and capable of automating classification of data Transformers  SU2ntUMAUention o lative research | \0/sY hardware, coherence

recorded in the future.

Classical machine learning offers numerous models and

Mechanisms

time limits

Examples where quantum ML outperformed classical ML:

algorithms for highly efficient classification. Their quantum
counterparts are still in research phase.

(1) high dimensional feature spaces, (2) dimensionality reduction,
(3) sampling from complex distributions, (4) simulation of chemical
properties and reactions, (5) quantum Monte Carlo methods, etc.



Due to limited qubit resources,
quantum classifiers are sensitive to
class imbalance!

Often we have a minority class
(very small) of positive examples
(important to us).

In cases of the class imbalance,
we cannot trust accuracy as it can
be high even though the most, or
all, positive examples are
misclassified. What can we do?

We can also use
Cohen kappa statistic,
which adjusts accuracy

We cannot rely on the
accuracy alone, we
must also analyse our
failures, e.g. check based on the distribu-
- Sensitivity: the propor-  tion of class values.
tion of correctly identi- - Kappa > 0.6
fied true positives is considered good!
*  Specificity: the propor-  « High accuracy but
tion of correctly identi- low kappa is poor!
fied true negatives

Data preparation for classification

Class imbalance and preparation of predictors

In cases of class imbalance, some
classifiers may produce results
biased towards the majority class.

The solution may involve
rebalancing data sample by either:

. over-sampling the minority class or
. under-sampling the majority class.

Balancing of training data may lead
to a better model.

However, balancing of test data
leads to incorrect accuracy.

It is best to balancing training data
and to use the unbalanced data for
validation and testing.

All previously mentioned concerns
about analysis and preparation of
predictors are still applicable to
guantum classification.

SMOTE or Synthetic Minority
Oversampling Technique

Is one of the most commonly used
technique for class oversampling.

SMOTE creates synthetic (not real)
data points in the smallest label
class. And you can perform SMOTE
balancing iteratively for all classes.

However, in some circumstances,
some models can easily deal with
unbalanced samples.

In which case, by balancing data the
model performance may drop!

Always test if sample balancing
actually improves the model
performance or not.

Weighing data examples (by inverse
of class frequency) is an alternative

approach in classical ML. In training
with weighing, e.g. weights are used
to penalise majority class examples.

PyTorch-Ignite, “CohenKappa”,

https://pytorch.org/ignite/generated/ignite.metrics.CohenKappa.html

Imbalanced-learn, “SMOTE”,

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling. SMOTE.html


https://pytorch.org/ignite/generated/ignite.metrics.CohenKappa.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

Priors and classification

Another way is to balance all data, for training and
validation, but then recalculate validation results.

The class probability distribution in the population is
called prior probability (or priors).

Let's say we have 900 examples, split 2:1 between
negative vs positive cases, we are interested in positives.

If we trained a model on this data, it will favour the
negative cases, it will over-train on them.

We can resample data (e.g. under-sample the negatives).
Now we have balanced data, better for model training.

Population Balanced Sample Misclassification Misclassification
\ In the balanced In the population
N
sample y
N
l/

No Yes No Yes No No Yes

We then validate the model and let us say we found 50%
of negatives and 25% of positives to be misclassified.

Our misclassification rate is: 0.25+0.125=0.375

However, if we deploy the model to work with the
population data we can expect a very different result — we
need to scale this result to reflect the proportions In the
population, i.e. 2:1 (not 1:1).

The new misclassification rate is 1/3+0.25x1/3=0.417
Detection rate of positive cases TP/FN is the same.
The cost of handling negative cases went up.

Confusion Matrix: Sample Confusion Matrix: Population
True True
No No
True TP True P
Yes Yes
EN
Predicted | Predicted Predicted | Predicted
No Yes No Yes

Some data mining software can perform these calculations automatically,



### Create a PyTorch model with a PennylLane circuit within

PennyLane /| PyTorch

def init (self, sim, n wires, n layers=1, shots=None):

Neural network structure ST LT 2310

self.sim = sim

Both models are designed as self.n_wires = n_wires
PyTorch neural net classes. Slif LIRS = b Uy
### Classic classifier self.shots = shots
class Classic Auto(nn.Module): <
- # Wrap a torch layer around the PennylLane model
.. . initiali I layers = [self.layers()]
def _ init_ (self, in_shape, out_shape): . Both initialise thell’ model B )
S lieesie cwim, =elE et 0 instances by saving the most —_ self.model_pt = nn.Sequential(*layers)
_ important parameters (self), ### Define a quantum layer
layers = self.layers(in shape, out shape) and then creating and saving def layers(self):
self.model = nn.Sequential(*layers) <] .
their models (self.model) as # Specify a device
def layers(self, in shape, out shape): sequences of Iayers. dev = gml.device(self.sim, wires=self.n wires, shots=self.shots)
clayer @ = torch.nn.Linear(in_shape, 32) :Dgglﬁgi Eh;gz:z:z:lﬁoﬂeiiizg)its circuit (or node, save it for later)
clayer 1 = tcrch.nn.R?LU() Both define and create neural self.aodel_qc = qm‘L.QNodE(model_pl, dev, interface="torch')
clayer_2 = torch.nn.Linear(32, 64) network Iayers The quantum >
clayer_3 = torch.nn.ReLU() ) N # Define the shape of the model weight parameters
clayer_4 = torch.nn.Linear(64, 32) < model S QNode with its .Shape # Note that the name "weights" must match the param name defined in function
clayer_5 = torch.nn.ReLU() details was WrapDEd Ina # "model pl" which in our case is gmodel(inputs, weights)
clayer 6 = torch.nn.Linear(32, 8) TorChLayer_ The QNode was weights_shapes = {"weights": gshape(self.n_wires, n_layers=self.n_layers)}
c}ayerj = torc:.nn.ReLU() . created with a “torch” interface # Turn the circuit into a Torch-compatible quantum layer
8 =1t .nn.Li 8, t H o : -
Sk oreh.nn. Linear( out_shape) and a device speC|f|ed via qlayer = gqml.gnn.TorchLayer(self.model qc, weight shapes=weights shapes)
layers = [clayer 0, clayer 1, clayer 2, clayer 3, clayer 4, parameters. return glayer
clayer 5, clayer 6, clayer 7, clayer 8] ### Return the quantum model circuit
return layers ) ) def gmodel_qc(self):
Both models identify the return self.model qc
et femarsi(fd;,l)((); fOI’W&I’C/ function, WhiCh ### Apply the model to data (forward step)
x = self.model(x .
return x = pI’OVId.ES a method of def forward(self, x):
calculating outputs from  __j, v = self.model_pt(x)
Pure PyTorch inputs. return y
. . . . PyTorch with
The structure of a PyTorch classic model is almost identical to PennyLane layer

that of a PyTorch model with a quantum model as it layer!
What is different is the specification of their layers.



Model training

### Trains a pure PyTorch model

def train_model(model, X, y, cost fun, acc_fun, optimizer, epochs,
log_interv=100, prompt_ fract=0.1, acc prec=0.5, start time=0):

history = []

acc_hist = []

opt_params = {}

hist_params = []

min_epoch = @

min_cost = 1000

max_acc = -1000

if start_time == 0: start_time = time.time()

model.train()
for epoch in range(epochs):

optimizer.zero_grad()

output = model(X)

cost = cost_fun(output, y)

acc = acc_fun(output, y, prec=acc_prec)
cost.backward()

optimizer.step()

Training
of Pure PyTorch NN

curr_cost = cost.item()

curr_acc = acc

if curr_cost < min_cost:
min_cost = curr_cost
min_epoch = epoch
opt_params = copy.deepcopy(model.state dict())

if curr_acc > max_acc:
max_acc = curr_acc

if epoch % log_interv == 0:
history.append(curr_cost)
acc_hist.append(curr_acc)
hist params.append(copy.deepcopy(model.state dict()))

elapsed = time.time() - start_time
if (prompt_fract == 8) or (epoch % int(prompt_fract*epochs) == 0):
print(f'{epoch: 5d} '+ \
f'({elapsed:06.0f} sec): '+ \
T'Cost {curr_cost:6.4g} "\
T'Acc {curr_acc:6.4g}')

return history, acc_hist, opt params, hist params, (min_epoch, min_cost)

PennyLane | PyTorch

### Create a model

q_auto = Quantum Auto(sim, X train tens.shape[l],
n_layers=n_layers, shots=shots).double().to(torch device)

### Loss and optimiser
cost_fun = torch.nn.MSELoss()

### Train the model

Invocation of the
PennyLane model training

opt = torch.optim.NAdam(q_auto.parameters(), 1r=0.01)

train_mse hist, train_acc_hist, opt_params, hist params, opt point = \
train_model(q_auto, X_train_tens, y_train_tens, cost_fun, accuracy, opt,
epochs=50, log_interv=1, prompt_fract=0.1, acc_prec=0.5)

Both models are trained in the same way.
PyTorch has no knowledge of the two
models differences!

The training function receives data (X and y),
cost and accuracy calculating functions, the
optimiser, the required number of training
epochs, and other variables used during the
process.

Model training starts with the initialisation of
lists to collect training cost and accuracy at
each optimisation step.

Then the model training starts.

Training is conducted in a loop utilising
gradients in the model weights.
First, the optimiser is instructed to
reinitialise its gradients.
Second, it performs the forward step
by applying the model to data (X) to
receive the model predictions on output.
Third, the predictions are compared
with the expected values (y) and
the cost of differences is calculated.
Fourth, the optimiser takes a backward
step to recalculate all model weights.
Fifth, the optimiser then prepares for
the next optimisation step.
Finally, we collect all performance
indicators and print the partial results.

### Trains a PennylLane+PyTorch model

def train model(model, X, y, cost fun, acc_fun, optimizer, epochs,
log_interv=100, prompt_fract=0.1, acc_prec=0.5, start_time=0):

history = []

acc_hist = []

opt_params = {}

hist params = []

min_epoch = ©

min_cost = 1000

max_acc = -1000

if start_time == 0: start_time = time.time()

model.train()
for epoch in range(epochs):

optimizer.zero grad()

output = model(X)

cost = cost_fun(output, y)

acc = acc_fun(output, y, prec=acc_prec)

cost.backward()

optimizer.step() I
Training

of PyTorch NN with

a PennyLane layer

curr_cost = cost.item()

curr_acc = acc

if curr_cost < min_cost:
min_cost = curr_cost
min_epoch = epoch
opt_params = copy.deepcopy(model.state dict())

if curr_acc > max_acc:
max_acc = curr_acc

if epoch % log interv ==
history.append(curr_cost)
acc_hist.append(curr_acc)
hist_params.append(copy.deepcopy(model.state dict()))

elapsed = time.time() - start_time
if (prompt_fract == 0) or (epoch % int(prompt_fract*epochs) == 0):
print(f'{epoch: 5d} '+ \
f'({elapsed:06.0f} sec): '+ \
f'Cost {curr_cost:6.4g} "+ 0\
f'Acc {curr_acc:6.4g}"')

return history, acc_hist, opt_params, hist _params, (min_epoch, min_cost)



* There are two possible ways of exploring

In SearCh Of the Optimum multiple parameter values, i.e. with:

- - Grid search of parameter values, where for
Grid search each parameter we supply a list of its
possible values and we test the model on all

*  The performance of a quantum classifier depends on the their combinations — most commonly used
combination of its circuit characteristics, e.g. and easy to implement;
- the number of qubits and the number of layers ~ Random grid search, where test points are
* as well as the hyper-parameters of the optimiser and its generated randomly, each having a
training process, e.g. combination of (most likely) unique
- the learning rate and the number of epochs parameter values — fewer tests and yet better
- the optimiser in use, e.g. SGD, RMSprop, Adam coverage of parameter values.
training process hyper-parameters. (16 tests) o (12 tests)
« Trial and error is a possible approach! : ‘/S'”’f“;
However, a systematic approach is always preferred!
- For a single parameter, a feasible approach is to construct f I 2 o
a loop over a list of hyper-parameter values and then log, g """"" & ‘ """"" LA A g """" @ o
chart and review the performance indicators. 5 [ @ @ @ @ 5le ? L
- Scikit-learn and PyTorch (via skorch) provide support § --------- @ 0 --------- L § P i h A
(via its operators) for the systematic exploration of multiple Bl @ @ @ @ £ o
model parameters in a grid search. 5. 5 s
Important parameter p, Important parameter p,

Scikit Learn, “Tuning the hyper-parameters of an estimator”, . . .
https://scikit-learn.org/stable/modules/grid_search.html The collection of parameters may include the more important
. . ; - ) parameters, which may be better at identifying distinguishing

Adrian Tam, “How to Grid Search Hyperparameters for PyTorch Models”, features of the error surface than unimportant parameters.
https://machinelearningmastery.com/how-to-grid-search-hyperparameters-for-pytorch-models/


https://scikit-learn.org/stable/modules/grid_search.html
https://machinelearningmastery.com/how-to-grid-search-hyperparameters-for-pytorch-models/

MSE cost

Accuracy of risk predictions

0.5

0.4

o
w

0.2

0.14

1.0

e
@

o
EY

4
>

0.2

0.0
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Results

Classifier training performance

= Train: min MSE (cost) = 0.0460 @ 0389
—— Test: min MSE (cost) = 0.2208 @ 0036

Cost (MSE)

50 100 150 200 250
Training iterations

300 350 400

Classification of car insurance risk

Accuracy

Pure PyTorch

—— Train: max ACC = 0.9416 @ 0361
— Test: max ACC = 0.7353 @ 0024

50 100 150 200 250
Training iterations

300 350 400

Model scoring and plotting
of results is also identical!

As we are training with small
data sets, the classical
“plain vanilla” PyTorch
models tend to quickly

overtrain.

There is a lot more tuning
required of the quantum
model but its plots are
also more beautiful!

Performance plots
from training classical
models look as if they

were produced by a
very nervous but very
successful gambler!

Note that IMHO
if a quantum model on
simple data
exceeds the performance
of a classical model,
it usually means that you
have not tuned it properly!

Sadly,
this is the case here!
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Classifier training performance

—— Train: min MSE (cost) = 0.1113 @ 0079
=== Test: min MSE (cost) = 0.1535 @ 0079

Cost (MSE)

10

20 30 40 50
Training iterations

Classification of car insurance risk

60 70 80

1.01

e
©

o
o

o
FS

0.2

0.0

—— Train: max ACC = 0.8686 @ 0063
=== Test: max ACC = 0.8088 @ 0018
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PyTorch with
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Binomial classification
Adjusting the threshold

Assume we have two classes - positive and negative.

When a positive class is correctly classified, it is
called frue-positive (TP), the negative class is called
true-negative (TN).

Consider these 20 data points, classified with different
confidence factors from 0 to 1. Depending on the threshold
they will be classified differently and the classifier
performance will also be different.

TPR=TP/P
FPR=FP /N

1 (true)

P=7

N=13

Misc = 6/20 = 30%
Acc =1-Misc =70%
TPR = 6/7 = 85.7%
FPR = 6/13 = 46.2%

0.3 (threshold)

0 (false)

1 (true)

0.75 (threshold)

P=7

N=13

Misc = 5/20 = 25%
Acc =1 - Misc =75%
TPR =4I7 =57.1%
FPR =213 =15.4%

0 (false)

(sensitivity)

TPR

Scikit Learn, “Tuning the decision threshold for class prediction”,
https://scikit-learn.org/stable/modules/classification_threshold.html

When a positive class is incorrectly classified it is
called false-negative (FN), the incorrectly classified
negative class is called false-positive (FP).

The prediction is defined by confidence factors, i.e.
when the confidence of a positive class is greater
than a certain threshold, (e.g. 0.5), it is concluded
that classification is positive, else it is negative.

The threshold can be changed to maximise some
performance indicator (e.g. the car is risky).

We can visualise the classifier performance by plotting an
ROC (Receiver Operating Characteristic) chart of all
possible pairs of FP rate vs TP rate when varying the
threshold (see below). It is often considered that the “best”
classifier has the largest area under the curve (AUC).

—~1 However, AUC should not be used
030t o as a sole criterion for classifier
selection. From a decision making
viewpoint, we are not interested in a
075t model which is good for all possible
~7 AUC:area | hresholds. Instead, we are
e under the . . . .
curve interested in a model with a single
- specific threshold that supports the

FPR most effective decision making!

(1-specificity)


https://scikit-learn.org/stable/modules/classification_threshold.html

Barriers to quantum classification

Some Problems Possible Solutions
Poorly chosen embeddings can lead to * Avoid simple embeddings for complex data (e.g., basic angle encoding), as
loss of information or biases. they may not capture nonlinear relationships.

* Consider trainable embeddings (e.g., quantum neural networks).

Quantum models are sensitive to * Oversampling or hybrid classical-quantum approaches may be needed.
Imbalanced data, due to limited qubit
resources.

Since classifiers rely on discrete decision * Regularisation may help (via classical post-processing).
boundaries, barren plateaus can lead to
random guessing behaviour.

Quantum classifiers can overfit due to * Use dimensionality reduction (e.g., PCA) before encoding or employ classical
limited training data or excessive circuit regularisation (e.g., dropout in hybrid models).
expressivity.

Quantum classifiers might appear to work |* Always compare against classical models and their performance (e.g., SVM,
well on training data but fail on test data due neural networks). Quantum advantage is rare!
to quantum-specific artefacts,




Dataset 2: Sonar

PennyLane Demo \%¥

Engineer quantum solutions!

Dataset 1: Automobile risk assessment

-= PennyLane Demo:
-« Explore insurance risk data
e Consider class order and the need for shuffling
* Reduce your data dimensionality (test and compare)
*  Play with hyper-parameters to improve performance
*  Apply the best model to new data

Key takeaways:
*  Quantum modelling is an engineering task
* There is more to success than a clever model
* Data encoding is (again) crucial to performance
*  Dimensionality reduction is crucial to performance
*  Design your model tests — use grid search!
*  Experiment with the ansatz parameters
* Learn from classical ML how to measure accuracy
¢ Think about class imbalance
* Once model is trained, you can still improve accuracy!




Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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