
1 / 13

Quantum Machine Learning
Quantum Estimators

Jacob L. Cybulski
Enquanted, Melbourne, Australia

QML process
Quantum estimation
Linear models
Data preparation and partitioning
Fixing the random seed
Model creation and training
Chasing the performance targets
Scoring the model
Never trust your luck!
Don’t get cocky
Avoiding barren plateaus
Model diagnostics -

residual analysis
Barriers to quantum estimation

11-12 October 2025, QPoland, Fundacja Quantum AI

Secrets revealed in this session:

To gain experience to evaluate
design and implementation
options for the development of
quantum estimation models

measurement

Pauli
rotations

We will assume
some knowledge of

Quantum Computing
ML and Python

Creative Commons CC BY-NC-ND

 2 / 13

Process of quantum
model development

Define / redefine a
business problem

Understand, explore,
prepare and repair data

Discover relationships
in data

Acquire, represent,
select / re-select data

Develop and apply
analytic models

Deploy and manage
analytic solutions

Analytic process
integration

Evaluate and improve
the models

Assess results

Reflect, research
and innovate

Define a business problem – Formulate a business
problem and specify requirements for its solution in terms of
decisions to be turned into business actions.

Understand and prepare data – Select a data sample.
Explore and understand attributes characteristics. Deal with
missing values and outliers. Clean, transform, convert and
select attributes. Reduce data dimensionality if needed.

Discover relationships in data – Explore, visualise and
understand relationships between data features. Determine
targets, labels and their predictors.

Create analytic models – Evaluate alternative quantum
models and algorithms to suit the problem and data. Study
the models’ characteristics, their strengths and weaknesses.
Select and build the most promising.

Evaluate and improve the models – Validate and test the
model for its ability to predict or explain. Evaluate the model
training and test performance. Tune the model to optimise
its performance. Interpret and report results.

Analytic process integration – Integrate pre-processing,
exploratory and predictive analytic elements and
visualisations into a complete analytic process.

Deploy, manage and assess analytic solutions – Embed
the final quantum model and classical analytic process in a
business application. Apply the process to live data. Use the
results to support business decisions and actions. Measure
and assess the model performance on real data. Reflect,
research and innovate.

 3 / 13

Classical estimation /
Quantum estimation

Estimation models (or estimators) in machine learning
are used to predict continuous numerical outputs
(or targets), in contrast to classification models, which
predict discrete labels. Such models are able to
estimate quantities based on input features.

Classical estimation models include:
● Linear Regression Models

(Ordinary Least Squares Regression, Ridge and Lasso Regression)
● Non-Linear Regression Models

(Polynomial Regression, Support Vector Regression)
● Bayesian Models

(Bayesian Regression, Gaussian Processes)
● Neural Networks

(Feedforward Neural Networks, Recurrent Neural Networks)
● Time Series Forecasting Models
● Ensemble Models
● Etc.

Quantum estimation models adopt the principles of
quantum mechanics to enhance the precision, efficiency,
or computational power of estimation tasks. These models
are especially useful in situations where classical
estimation methods face limitations, such as:

● high-dimensional data
● noisy environments, or
● highly complex calculations.

Applications of classical and quantum estimators:
● Finance:

Risk assessment, stock price prediction.
● Healthcare:

Disease progression estimation, drug effectiveness.
● Retail:

Demand forecasting, inventory optimization.
● Autonomous Vehicles:

Estimating distances, speeds.
● Energy:

Power consumption prediction.
● Etc.

Quantum models capable of estimation tasks:
● Quantum Neural Networks (QNNs):

speedups for high-dimensional data.
● Quantum Kernel Methods:

encoding data into quantum Hilbert space.

 4 / 13

F1

F2

F3

F4

F5F6

F7

F8

F9

F10
Quantum model dev.
training, validation and testing

To assess the model’s performance on new data we
need to apply it to data not used in training.

Commonly adopted approach is known as
holdout testing, where we randomly split data into three
partitions - one to be used for model training, one for its
validation while improving the model, and one for
honest testing on data never used before.

Holdout testing validates and
test the model once only,
assuming all data partitions as
representative of the population,
which may not be true.

Cross-validation (CV) is a
more appropriate testing
method, which repeatedly trains
and validates a model using
different data samples (folds),
then averaging the performance
obtained from all runs.

As training a quantum model
may be extremely slow, cross-
validation may not be feasible.

All data
for

Training

All data
for

Test ing
As quantum models are sensitive to
their initialisation, once the model is
developed, we retest it with differently
initialised weights, in the process also
resampling data partitions.

Note: as we develop the model we
freeze data partitions by setting a
random seed, to ensure performance
changes are due to our actions and not
differences in data partitions.

Training

Validation

Testing

While developing a quantum model we need to test
its capacity to learn. This can be done by applying
the model to data used in its training, with the objective
to test its ability to recall what it learnt.

Training

Validation

k-fold CV

 5 / 13

Training a
PennyLane model

initial weights

Circuit (function)

measurements

input params

weight params

gradients

Optimiser

Training
Loop

Circuit
Factory

meta-params architecture

X, y Data

In PennyLane the PQC is written as a
circuit factory which is a function building
the circuit (QNode) architecture and creating
a “closure” for its meta-parameters. The
circuit function defines its weight parameters,
input parameters, and most importantly the
evolution of its state, by means of wires
(qubits), gates, and measurements.

When executing, the circuit takes weight and
input values (possibly in batches) and returns
measured expectation values.

Note that the circuit weight parameters also
define gradients which are used in the
calculation of expectation values, and which
are also passed to the optimiser whenever
required during the optimisation process.

The purpose of the
 training loop is to manage

and improve the circuit weights
and collect the costs of

intermediate models to the log.

log

Optimiser provides a function
step_and_cost which executes
a step in a training loop. Starting
with some model initial weights,
it is called iteratively to perform a
forward step to execute the circuit
using the current weights and data,
the cost function is then applied to
the results producing the model’s
cost. Then a backward step is
taken to improve the model
weights, which are returned
with the calculated cost.

A dataset of (X, y) pairs needs
to be prepared, cleaned and
partitioned for training and
testing.

Parameter
Space

Hilbert
Space

Cost
Function

current weights

state evolution

The loop starts with the model’s initial weights and
then passes the cost function, current weights and

input data to the optimiser one step at a time.

For the circuit to be
executable it needs to
become a QNode,
associated with a
quantum device (e.g.
“default.qubit”), and
optionally interfaced
with some gradient
package (e.g. “torch”)
and a differentiation
method (e.g. "adjoint").

In PennyLane everything is a function!

 6 / 13

Quantum model performance:
Scoring your quantum model

In model training we rely on the specific loss / cost
function, e.g. MSE or MAE, to guide the optimiser.

During training, the costs and the model parameters for
all optimisation steps are saved for later use.

The lowest cost indicates the optimum model training
parameters. However, the model performing best in
training may not be the most generalisable.

So we can use all saved model parameters, to
reconstruct the intermediate models and apply them to
either training, validation or test data.

This allows calculation of other performance scores
useful in further analysis to determine the parameters of
the model that is optimum for the population (and future
data) and most suitable for its final deployment.

Means Square
Error (MSE)

Coefficient of
Determination (R2)

 7 / 13

Diagnostic charts
Performance is not enough!

● The purpose of diagnostic charts is to better understand the
accuracy (or precision) of the model and errors it makes.

● The residual scatter plot (left) gives an overview of the
errors produced before and after training. However, the plot
does not give an intuition of the severity of the problem.

● The severity of the errors (and their location) is better
reflected in a histogram of residuals (upper-right), where the
residual values are aggregated.

● The truth vs prediction chart (middle-up) allows to see how
and where the prediction deviates from the expectation.

before
training

after
training

after
training

after
training

(1) Locate errors,
(2) Understand errors,
(3) Eliminate errors!

 8 / 13

Can the model still
learn? Example

Global Effective Dimension (GED):

A static, probabilistic measure of the model
complexity as the geometry of its entire
parameter space.

Local Effective Dimension (LED):

Dynamic geometric measure of the model
complexity in training, derived from GED, but
affected by data distribution and optimisation
algorithm

The study investigated how GED and LED
correlated with barren plateaus (BP).

This study used two different datasets - IRIS and MNIST, investigated four approaches to dealing with
BPs, each required a unique quantum model, however, each model had ten runs randomly initiated.

LED at the peak
test accuracy

LED before
training

Complex 3D
results collected

Never trust
your good luck!

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on the
quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

 9 / 13

Compare models:
quantum vs classical

Varying the circuit depth: quantum model in PennyLane + PyTorch @ 1000 epochs

The experiments show:
The larger the QAE latent space, the better learning
(the accepted idea that reducing latent space helps abstraction is wrong)

There is an optimum depth for the QAE model.
PennyLane “minimum” hybrid models outperformed Qiskit models in
training, but not in validation.
Within the limit of 1000 epochs, QAE matched CAE.
In general, QML models on simple tasks (such as DL AE)
do not outperform the classical models – so to gain quantum
advantage you need to pick the application very carefully.

Varying the latent space: DL CAE model in PyTorch @ 1000 epochs

Varying the latent space: quantum model in PennyLane + PyTorch @ 1000 epochs

USA beer sales (IRI)

Jacob L. Cybulski and Sebastian Zając (2024): "The Art of Data Encoding and Decoding for Quantum
Time Series Analysis." 8th Intl Conf on Quantum Techniques in Machine Learning,

University of Melbourne, Melbourne, Australia, 25-29 Nov 2024.

QAE CAE

 10 / 13

The curse of
dimensionality

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on
the quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

45-D space4-D space

optimum
optimum

initial point initial point

Note how distribution of
pairwise distances between

points within an n-ball
concentrates around

the mean as the
dimension increases

cost landscape
surface Barren Plateaus (too many parameters)

● Pairwise distances between uniformly distributed points in
high-D space become (almost) identical, the surface of such a
space is almost flat (all n-ball points are near its surface).

● In a quantum model with a high-D parameter space, the cost
landscape is also flat, the situation called barren plateau (BP).

● In high-D parameter space, models sampled by the optimiser
are very sparse in both Hilbert space and parameter space.

● When BPs emerge, the optimiser struggles finding optimum.
● Selecting the optimisation initial point far from the optimum

(e.g. random) makes it even more difficult!

There exist well-known causes of BPs and
there are well-known BP countermeasures
● use fewer qubits / layers / parameters
● use local cost functions (do not measure all qubits)
● use non-Euclidean metrics (e.g. Fisher Information Metric)
● beware of random params initialisation (and keep them small)
● use BP-resistant model design (e.g. layer-by-layer dev)
● use BP-resistant models (e.g. QCNNs)

Note how
volume (grey) in

n-ball shrinks
(max n=5)

volume

 11 / 13

Barriers to quantum estimation

Problems Possible Solutions
In VQA training
● Quick forward step (quantum)
● Slow backward step (classical)

● Use parameter-shift rules (quantum native gradients)
● Use hardware-efficient differentiation
● Use quantum kernels, where training is one-shot linear algebra
● Use quantum annealing for training
● Train using quantum Gibbs sampling (Bolzmann Machines)
● Adopt time-evolution based gradients (with Trotterisation)
● Use adaptive Trotterisation (to balance precision vs circuit depth)

Precision of continuous results =
number of shots

● More shots, more precision (more slow)
● Continuous-variable quantum computing (e.g. photonics)
● Analogue quantum computing

(e.g. neutral atoms, photonic systems, quantum annealing)
● Superconducting resonators
● Hadamard test / Iterative phase estimation

Quantum noise ● Train models with simulated noise
● Apply error correction and error mitigation techniques

Isaac De Vlugt. Differentiation on quantum hardware, PennyLane Tutorial. Sep 12, 2023.

 12 / 13

PennyLane Demo
Functions within functions...

PennyLane Demo:
● Explore the synthetic data
● Investigate data preprocessing tasks
● Learn how to encode data
● Check the clever cost function enclosure
● Look at the model as a function factory
● Learn how to calculate the model shape
● Produce the circuit and its plot
● Train the model
● Score the model and plot scores
● Perform analysis of residuals

Key takeaways:
● Quantum modelling is an engineering task
● There is more to success than a clever model
● Data encoding is (again) crucial to performance
● Experiment with the ansatz parameters
● A default optimiser may be the best afterall,

however, design experiments to test it!
● More training does not give better results
● When the model converged it is time for its scoring
● Estimation needs residual analysis

datasets

 13 / 13

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

