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Process of quantum
model development

Define / redefine a
business problem

Acquire, represent,
select | re-select data

Understand, explore,
prepare and repair data

Evaluate and improve Discover relationships
the models in data

K} Develop and apply

analytic models

Define a business problem — Formulate a business
problem and specify requirements for its solution in terms of
decisions to be turned into business actions.

Understand and prepare data — Select a data sample.
Explore and understand attributes characteristics. Deal with
missing values and outliers. Clean, transform, convert and
select attributes. Reduce data dimensionality if needed.

Discover relationships in data — Explore, visualise and
understand relationships between data features. Determine
targets, labels and their predictors.

Create analytic models — Evaluate alternative quantum
models and algorithms to suit the problem and data. Study
the models’ characteristics, their strengths and weaknesses.
Select and build the most promising.

Evaluate and improve the models — Validate and test the
model for its ability to predict or explain. Evaluate the model
training and test performance. Tune the model to optimise
its performance. Interpret and report results.

Analytic process integration — Integrate pre-processing,
exploratory and predictive analytic elements and
visualisations into a complete analytic process.

Deploy, manage and assess analytic solutions — Embed
the final quantum model and classical analytic process in a
business application. Apply the process to live data. Use the
results to support business decisions and actions. Measure
and assess the model performance on real data. Reflect,
research and innovate.



Quantum estimation models adopt the principles of

CIaSS|CaI EStl matlon I guantum mechanics to enhance the precision, efficiency,
- - or computational power of estimation tasks. These models
Quantu m estl matlon are especially useful in situations where classical

estimation methods face limitations, such as:

*  high-dimensional data

Estimation models (or estimators) in machine learning *  hoisy environments, or

are used to predict continuous numerical outputs * highly complex calculations.
(or targets), in contrast to classification models, which
predict discrete labels. Such models are able to

estimate quantities based on input features. *  Finance: _ o
Risk assessment, stock price prediction.

*  Healthcare:
Disease progression estimation, drug effectiveness.

Applications of classical and quantum estimators:

Classical estimation models include:

*  Linear Regression Models *  Retail:

(Ordinary Least Squares Regression, Ridge and Lasso Regression) Demand forecasting, inventory optimization.
*  Non-Linear Regression Models Autonomous Vehicles:

(Polynomial Regression, Support Vector Regression) Estimating distances, speeds.
*  Bayesian Models *  Energy:

(Bayesian Regression, Gaussian Processes) Power consumption prediction.
*  Neural Networks *  Etc.

(Feedforward Neural Networks, Recurrent Neural Networks)
*  Time Series Forecasting Models Quantum models capable of estimation tasks:
*  Ensemble Models *  Quantum Neural Networks (QNNSs):
° Etc. speedups for high-dimensional data.

. Quantum Kernel Methods:
encoding data into quantum Hilbert space.



Holdout testing validates and k-fold CV

Quantu m mOdEI dev_ test the model once only,

.. . . . assuming all data partitions as
training, validation and testing representative of the population,

which may not be true.

While developing a quantum model we need to test Cross-validation (CV) is a
its capacity to learn. This can be done by applying more appropriate testing
the model to data used in its training, with the objective method, which repeatedly trains

may be extremely slow, cross-
validation may not be feasible.

to test its ability to recall what it learnt. and validates a model using
different data samples (folds),
then averaging the performance
obtained from all runs.
As training a quantum model

As quantum models are sensitive to
their initialisation, once the model is
developed, we retest it with differently
initialised weights, in the process also
resampling data partitions.

Note: as we develop the model we
freeze data partitions by setting a
random seed, to ensure performance
changes are due to our actions and not
differences in data partitions.

To assess the model’s performance on new data we
need to apply it to data not used in training.

Commonly adopted approach is known as

holdout testing, where we randomly split data into three
partitions - one to be used for model training, one for its
validation while improving the model, and one for
honest testing on data never used before.




Training a

PennyLane model

Optimiser provides a function
step_and_cost which executes

a step in a training loop. Starting
with some model initial weights,

it is called iteratively to perform a
forward step to execute the circuit
using the current weights and data,
the cost function is then applied to
the results producing the model’s
cost. Then a backward step is
taken to improve the model
weights, which are returned
with the calculated cost.

In PennyLane the PQC is written as a

Hilbert circuit factory which is a function building

state evolution

Space the circuit (QNode) architecture and creating

a “closure” for its meta-parameters. The
circuit function defines its weight parameters,

gradients input params

input parameters, and most importantly the

weight params

evolution of its state, by means of wires
(qubits), gates, and measurements.

measurements

When executing, the circuit takes weight and

input values (possibly in batches) and returns

Circuit (function)

measured expectation values.

Note that the circuit weight parameters also

define gradients which are used in the
calculation of expectation values, and which

are also passed to the optimiser whenever
% @ required during the optimisation process.

meta-params

architecture

The purpose of the

Parameter
Space

For the circuit to be
executable it needs to
become a QNode,
associated with a
guantum device (e.qg.
“default.qubit”), and

training loop is to manage

initial weights

and improve the circuit weights
and collect the costs of
intermediate models to the /og.

The loop starts with the model’s initial weights and
then passes the cost function, current weights and
input data to the optimiser one step at a time.

Model training started Iog

optionally interfaced

current weights X, y Data - ‘
with some gradient

(00:00:00) - Iter#: 0 / 500, Cost: 0.238564
(00:00:07) - Iter#: 50 / 500, Cost: 0.162685
(00:00:14) - Iter#: 100 / 500, Cost: 0.126066
(00:00:21) - Iter#: 150 / 500, Cost: 0.073866
(00:00:29) - Iter#: 200 / 500, Cost: 0.053152
(00:00:36) - Iter#: 250 / 500, Cost: 0.038513
(00:00:43) - Iter#: 300 / 500, Cost: 0.033054
(00:00:50) - Iter#: 350 / 500, Cost: 0.029146
(00:00:58) - Iter#: 400 / 500, Cost: 0.027865
(00:01:05) - Iter#: 450 / 500, Cost: 0.026759

Total time 00:01:12, min Cost=0.026013

package (e.g. “torch”)
and a differentiation
method (e.g. "adjoint").

A dataset of (X, y) pairs needs
to be prepared, cleaned and
partitioned for training and
testing.

In PennyLane everything is a function!
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Scoring your quantum model

In model training we rely on the specific loss / cost
function, e.g. MSE or MAE, to guide the optimiser.

During training, the costs and the model parameters for
all optimisation steps are saved for later use.

The lowest cost indicates the optimum model training
parameters. However, the model performing best in
training may not be the most generalisable.

Estimator performance (MSE)

—— Train MSE = 0.0008 @ 0099 === Test MSE = 0.0011 @ 0065

Means Square
Error (MSE)
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Quantum model performance:

So we can use all saved model parameters, to
reconstruct the intermediate models and apply them to
either training, validation or test data.

This allows calculation of other performance scores
useful in further analysis to determine the parameters of
the model that is optimum for the population (and future
data) and most suitable for its final deployment.

Estimator performance (R2)

Coefficient of
Determination (R?)

—— Train R2 = 0.9884 @ 0098

=== Test R2 = 0.9795 @ 0065
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Diagnostic charts

Performance is not enough!

Residual Chart
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The purpose of diagnostic charts is to better understand the
accuracy (or precision) of the model and errors it makes.

The residual scatter plot (left) gives an overview of the
errors produced before and after training. However, the plot
does not give an intuition of the severity of the problem.

The severity of the errors (and their location) is better
reflected in a histogram of residuals (upper-right), where the
residual values are aggregated.

The truth vs prediction chart (middle-up) allows to see how
and where the prediction deviates from the expectation.



Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on the
guantum neural network capacity to learn”, Quantum Inf Processing 22, 442.
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Jacob L. Cybulski and Sebastian Zajac (2024): "The Art of Data Encoding and Decoding for Quantum
Time Series Analysis." 8th Intl Conf on Quantum Techniques in Machine Learning,

CO m pare m O d e I S : University of Melbourne, Melbourne, Australia, 25-29 Nov 2024.
q u antu m VS C I aSS i Cal USA beer sales (IRI)  Varying the latent space: DL CAE model in PyTorch @ 1000 epochs
QAE CAE

Experiments Training Validation

The E‘Xperlments ShOW Lat Tr TR2 TMSE TRMSE TMAE TMAPE VR2 VMSE VRMSE VMAE VMAPE

The larger the QAE latent space, the better learning R
(the accepted idea that reducing latent space helps abstraction is wrong) 0 8 0 0.5621 0.0087 0.0925 0.0716 0.0615 0.7475 0.0478 0.2105 0.1583 0.1444
There is an optimum depth for the QAE model. 1 7 1 0.9636 0.0086 0.0925 0.0683 0.0607 0.7491 0.0463 0.2016 0.1614 0.1431
PennyLane “minimum” hybrid models outperformed QiSkit models in 2 6 2 0.5631 0.0081 0.0911 0.0708 0.0604 0.7547 0.0466 0.2133 0.1554 0.1443
training’ but not in validation. 5 5 3 09592 0.0085 0.0925 0.0710 0.0624 0.7468 0.0455 0.2133 0.1633 0.1467
Within the limit of 1000 epochs, QAE matched CAE. 4 4 4 0.5609 0.0088 0.0941 0.0713 0.0618 0.7668 0.0445 0.2120 0.1604 0.1445
In general, QML models on simple tasks (SUCh as DL AE) 5 3 5 0.9625 0.0092 0.0973 0.0701 0.0646 0.7461 0.0453 02146 0.1677 0.1464
do not Outperform the classical models - so to gain quantum 6 2 6 0.5515 0.0121 0.1096 0.0815 0.0697 0.7144 0.0516 0.2264 0.1694 0.1504
advantage you need to piCk the application very carefully. 7 1 7 0.8575 0.0321 0.1788 0.1274 0.1098 0.4706 0.0937 0.3012 0.2217 0.1859

Varying the circuit depth: quantum model in PennyLane + PyTorch @ 1000 epochs Varying the latent space: quantum model in PennyLane + PyTorch @ 1000 epochs

Experiments Training Validation Experiments Training Validation
Lay Lat Tr Xtr TR2 TMSE TRMSE TMAE TMAPE VR2 VMSE VRMSE VMAE VMAPE Lay Lat Tr Xtr TR2Z TMSE TRMSE TMAE TMAPE VRZ VMSE VRMSE VMAE VMAPE

Run Run
8 1 5 3 0 07663 0.0449 0.2112 0.1508 0.1285 0.1460 0.1015 0.3154 0.2192 0.2081 o 3 8 0 1 09732 0.0062 0.0770 0.0581 0.0541 07139 0.0417 0.2034 0.1545 0.1478
9 2 5 3 0 09635 0.0084 0.0910 0.0703 0.0652 06278 0.0475 02169 0.1656 0.1598 1 3 7 1 1 09736 0.0061 0.0764 0.0579 0.0545 07350 0.0373 0.1928 0.1467 0.1460
10 3 5 3 0 0.9589 0.0093 0.0953 0.0693 0.0631 0.6926 0.0400 0.1994 0.1470 0.1397 2 3 6 2 1 09667 0.0076 0.0864 0.0643 0.0602 0.6953 0.0438 0.2083 0.1518 0.1463
11 4 5 3 0 09644 0.0081 0.0885 0.0656 0.0592 0.6890 0.0413 0.2028 0.1545 0.1457 3 3 5 3 1 05540 0.0103 0.1003 0.0731 0.0653 0.6770 0.0455 0.2126 0.1620 0.1499
12 5 5 3 0 09572 0.0096 0.0971 0.0693 0.0624 0.7198 0.0386 0.1962 0.1474 0.1374 4 3 4 4 1 05244 0.0160 0.1221 0.0879 0.0765 0.6189 00499 0.2211 0.1688 0.1593
13 6 5 3 0 09528 0.0104 0.1015 0.0722 0.0642 0.6915 0.0408 0.2016 0.1531 0.1445 5 3 3 5 1 05056 00194 0.1346 0.0980 0.0866 0.6106 0.0553 0.2332 0.1765 0.1642
44 7 5 3 0 09499 0.0111 0.1052 00747 0.0659 0.6866 0.0412 02027 01502 0.1404 6 3 2 6 1 08435 0.0309 0.1703 0.1205 0.1035 0.4838 0.0653 0.2533 0.1814 0.1662

15 8 5 3 0 09525 0.0106 0.1027 0.0728 0.0649 0.7073 0.0400 0.1999 0.1503 0.1411 7 3 1 7 1 07197 00522 0.2284 0.1521 0.1263 02278 0.0895 0.2991 02136 0.1878



The curse of
dimensionality
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Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on
the quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.
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Barren Plateaus (too many parameters)

Pairwise distances between uniformly distributed points in
high-D space become (almost) identical, the surface of such a
space is almost flat (all n-ball points are near its surface).

In a quantum model with a high-D parameter space, the cost
landscape is also flat, the situation called barren plateau (BP).
In high-D parameter space, models sampled by the optimiser
are very sparse in both Hilbert space and parameter space.
When BPs emerge, the optimiser struggles finding optimum.
Selecting the optimisation initial point far from the optimum
(e.g. random) makes it even more difficult!

There exist well-known causes of BPs and
there are well-known BP countermeasures

use fewer qubits / layers / parameters

use local cost functions (do not measure all qubits)

use non-Euclidean metrics (e.g. Fisher Information Metric)
beware of random params initialisation (and keep them small)
use BP-resistant model design (e.g. layer-by-layer dev)

use BP-resistant models (e.g. QCNNS)



l Barriers to quantum estimation

Problems

Possible Solutions

In VQA training
* Quick forward step (quantum)
e Slow backward step (classical)

* Use parameter-shift rules (quantum native gradients)

» Use hardware-efficient differentiation

* Use quantum kernels, where training is one-shot linear algebra

* Use quantum annealing for training

* Train using quantum Gibbs sampling (Bolzmann Machines)

* Adopt time-evolution based gradients (with Trotterisation)

* Use adaptive Trotterisation (to balance precision vs circuit depth)

Precision of continuous results =
number of shots

* More shots, more precision (more slow)
* Continuous-variable quantum computing (e.g. photonics)
* Analogue quantum computing
(e.g. neutral atoms, photonic systems, quantum annealing)
* Superconducting resonators
* Hadamard test / Iterative phase estimation

Quantum noise

* Train models with simulated noise
* Apply error correction and error mitigation techniques

Isaac De Vlugt. Differentiation on quantum hardware, PennylLane Tutorial. Sep 12, 2023.
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PennyLane Demo

Functions within functions...

PennyLane Demo:

Explore the synthetic data

Investigate data preprocessing tasks
Learn how to encode data

Check the clever cost function enclosure
Look at the model as a function factory
Learn how to calculate the model shape
Produce the circuit and its plot

Train the model

Score the model and plot scores
Perform analysis of residuals

Key takeaways:

Quantum modelling is an engineering task
There is more to success than a clever model
Data encoding is (again) crucial to performance
Experiment with the ansatz parameters

A default optimiser may be the best afterall,
however, design experiments to test it!

More training does not give better results
When the model converged it is time for its scoring
Estimation needs residual analysis



Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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