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Aims for quantum computing people:
Learn about ML in QML

Aims for machine learning people:
Learn about Q in QML

this workshop aims at 
developing the 

understanding of and 
practical skills in the 

creation and application of
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QML
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Variational quantum circuits are not executable!
They must first be instantiated, i.e. all of their

input and weight parameters must be assigned values!
Ansatz parameters are trainable.

Variational Quantum Models
= Parameterised Quantum Circuits

We can create a “variational” model = 
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each 
allowing rotation of a qubit state in 
x, y or z axis (as per Bloch sphere).

Typically, but now always, the circuit 
consists of three blocks: 

● a feature map (input)
● an ansatz (processing)
● measurements (output)

Classical input data is encoded into the feature map’s 
parameters, setting the model’s initial quantum state.

The quantum state is then altered by an ansatz, which 
consists of parameterised gates (operations), which alter 
the circuit state. Ansatz parameters are trainable. Qubits 
and parameters increase the model dimensionality.

The quantum state of the circuit is then measured and 
interpreted as the model’s output in classical data form, 
e.g. as binary values, integer or real value, a single 
event’s probability or the probability distribution. 

Classical
output data

measurement

Pauli
rotations
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Data encoding strategies
Data encoding

There are many methods of data embedding, such as: 
the basis, angle, amplitude, QRAM, ...  encoding, 

In this workshop we will rely on angle encoding realised 
as qubit state rotation by the angle defined by the data.

The rotation operators are always available in a quantum 
platform API (e.g. Rx, Ry, Rz or Rxyz).

Typically, the encoding rotation is performed around x or y 
axis, or both (allowing two values per qubit).

Rotations are relative to a specific qubit state, commonly 
starting at |0⟩ state, or (|0⟩+|1⟩)/sqrt(2), which require 
qubits to be initialised in these states.

The encoded value could be represented either by the 
angular rotation, or the amplitude of the qubit projective 
measurement (Z).

In some cases, input data is repeatedly encoded and 
interspersed with ansatz layers, called data reuploading, 
which improves the model performance.

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(-α)

Ry(+β)

y

[0]

+a

-b

cos(x)

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(+α)

Ry(+β)
y

[0]

+a

-b

Input
Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
Ry angles used: [1.047, 0.723, 2.094]
  

Measurements
Probabilities:  [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]
Amplitudes:     [0.5, 0.75, -0.5]

Rotation relative to 
|0⟩ initialisation Rotation relative to

H initialisation

Rotations were relative to 
|0⟩ initialisation

Note that training will place qubit 
states in areas x < 0 and arbitrarily 
around the z axis. Measurements 
of such states cannot distinguish 
them from “pure” x > 0 and z = 0.
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Angle encoding
The Good, the Bad and the Ugly

Two principles of quantum data 
encoding:

1) distinct data values should 
map onto distinct amplitudes 
(and angles)

2) the same data values should 
always map into identical 
amplitudes (and angles)

This example shows encoding 
values wrapping around the 
Bloch sphere (possibly several 
times), so that different values 
are mapped into the same 
amplitude.

(violates principle 1)

This example shows encoding 
values wrapping around the 
range of 0..2pi of the Bloch 

sphere, ensuring that different 
values are represented by 

unique amplitudes.

The problem may arise
if we have the same

value represented
by two distinct

amplitudes

(violates principle 2)

This visualisation 
shortened some of the 
vectors to highlight their 
difference, however, 
they are all of length 1.

The red dot represents 
the same value which on 
two occasions maps onto 
two different angles and 
thus two amplitudes.

Special care must be taken in those cases where the values form some kind of 
symmetry or repetition. For example in a case where we were to encode angular 

values in the range of -2pi..2pi. In such a case values x and 2pi+x effectively 
represent the same angular position and their encoding should also be identical.



 7 / 14

Commonly used
measurements and interpretation

Quantum circuits can be measured in many ways, e.g.
● all qubits (global cost / measurement)
● a few selected qubits (local cost / measurement)
● groups of qubits (each as a variable value)

And received in many different formats, e.g.
● as counts of outcomes (repeated measurements)
● as probabilities of outcomes (e.g. P(|0111⟩))
● as Pauli expectation values (i.e. of eigenvalues)
● as expectation of interpreted values (e.g. 0 to 15)
● as variance, etc.

Repeated measurement can be interpreted as outcomes of 
different types, e.g. 

● as a probability distribution (as is)
● as a series of values (via expvals)
● as a binary outcome:

single qubit measurement or parity of kets 
● as an integer:

most probable ket in multi-qubit measurement 
● as a continuous variable:

probability of the selected ket (e.g. |0n⟩)

or

or

integer logical

float

variable a

variable b

global cost local cost

Or we can measure 
expectation values
of the circuit state
and interpret them as a 
series of values in the 
range [-1..+1]

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

Beware that 
adding 1 measurement → 

doubles the number of outcomes!

So... having n
measurements leads to

2n outcomes

samplingsampling

estimation
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Ansatz design and training
A simple quantum classifier ...

feature maps vary in: 
structure and function

ansatze vary in:
● width (qubits #)
● depth (layers #)
● dimensions (param #)
● structure (e.g. funnelling)
● entangling (circular, linear, sca)

ansatz layers consist of: 
rotation blocks and entangling blocks
of R(x, y, z) and CNOT gates

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy, hinge-

embedding, Kullback-Leibner divergence

different optimisers:
gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit execution on:
simulators (CPUs), accelerators (GPUs) and

real quantum machines (QPUs)
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rotation gates 
alter qubit states 
around x, y, z 
axes

(entanglement)(rotation)

Beware that 
adding qubits adds

parameters and entanglements!

The number of states represented by the 
circuit grows exponentially with the 

number of qubits!

To execute a circuit we just apply it to input data 
and the optimum parameters

Ansatz
(with trainable parameters / weights + biases)

feature map
(with angle encoding)

Data reuploading across circuit’s width and depth
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DL models
and their optimisation

 A Deep Learning model, such as a neural network, 
aims to represent some problem. 

 The model takes inputs and calculates outputs 
via the layers of interconnected nodes.

 Each node has an activation, which is calculated as a 
weighted sum of nodes on its input, a bias added, and 
an activation function applied to produce its new value.

 All possible model parameterisations (weights and 
biases) form a multi-dimensional parameter space.

 The model quality is assessed by the cost function, 
where the lower the cost = the better the model.

 The costs of model parameterisations form a manifold 
over the parameter space - the cost landscape.

 The optimisation process relies on the shape of the 
landscape, which in turn is reflected in the gradient of 
points on the cost landscape.

 Gradient descent algorithms can assist in the 
identification of the model with the minimum cost.

 Backpropagation can also be used to efficiently 
re-calculate DL model’s weights.

Gradients are local 
i.e. during optimisation changes 
to the model cost influence 
gradients only in the immediate 
neighbourhood of the model

Cost

Local
Minimum

Cost 
Landscape

Optimisation
Path

Parameter 
Space

Noise!

Global
Minimum

An optimiser uses gradients to 
recognise the shape of the cost 
landscape and to navigate it in 

search of such model parameters 
that produce the lowest cost

Model and
its cost

Gradients

minimum
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Working with quantum models
Hilbert Space vs Parameters Space

● Hilbert state space (dim = the number of 
qubits) is the quantum realm where the models 
and their states evolve in response to unitary 
operations as defined by the circuit gates

● Data encoding brings in classical data into the 
Hilbert space as unique and correlated 
quantum states during the model execution

● Layers of circuit gates determine the 
evolution of the quantum model's initial state 
into its final state during the circuit execution

● Trainable parameter space is a classical 
multi-dimensional space of circuit gate 
parameters, which the optimiser navigates

● Entanglements (defined by CNOTs) create 
and correlate non-separable qubit states, 
which alter the parameter space geometry, and 
also the cost landscape used by the optimiser

● Measurement of individual qubits collapses 
their states, consequently projecting the circuit 
state onto classical outcomes

● The mapping from the quantum space to the 
classical parameter loses some information!

θ2 θ1

Cost /
Fidelity

Local
Minimum

Cost 
Landscape

Optimisation
Path

Parameter 
Space

Hilbert 
Space

Noise!

Real
Solution
(State)

Global
Minimum

Hamiltonian
Problem 

Representation

Optimisers can only 
see the shape of the
parameter space

Parameterised 
Quantum Circuit

Nonlocal interactions
(due to entanglements)

Mapping from the
quantum space to 
parameters space
loses information

Evolving model states,
as influenced by unitary

ops and their params

Entanglements twist 
and deform the 
parameter space
creating non-local
interactions

Model and its 
evolving state

Model and
its cost

Results and 
gradients are 

calculated here

Results and 
gradients are 

used here

Circuit execution 
takes place here
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 Optimisation of quantum model 
needs unique approaches due to the 
emergence of non-local gradients

 Entangled qubits result in
correlated parameters and gradients, 
so the changes to one are reflected 
in the changes in distant others

θ₁ (Qubit 1)

Cost

θ₂ (Qubit 2)

Q₁ Q₂

Parameter Correlation

Entanglement

Start

Global Minimum

Narrow Valley

Due to Entanglement

Parameter Space with Entangled Qubit Gradients
Correlated gradient landscape due to quantum entanglement

 The cost landscape of highly entangled 
circuits commonly features narrow valleys

 Also, backpropagation cannot be used 
directly in training quantum circuits, as 
their state is not directly accessible and 
the measurement collapses the state

 Gradient descend can still be used with 
global gradients, i.e. those derived from 
the geometry of the cost landscape

 Stochastic optimisation techniques are 
highly effective when the cost landscape 
is smooth (no quantum moise)

 Other techniques are also available, such 
as particle swarm optimisers, these 
however are applicable to smaller models

Quantum model optimisation
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PennyLane Demo
Everything is a function!

PennyLane (PL) …
● Supports differentiable programming paradigm
● Integrates seamlessly with the Python
● Has a range of operations for state preparation, 

gates and measurements
● Supports creation of flexible quantum algorithms
● Executes on simulators and quantum hardware
● Supports error mitigation
● Extends its quantum gradients with those from JAX, 

PyTorch, Keras, TensorFlow, or NumPy
● Supports hybrid quantum-classical models
● Allows training with hardware-compatible gradients 

and higher-order derivatives
● Provides numerous quantum models, such as: 

QNNs, quantum kernels and Fourier models
● Can be extended with models and optimisers from 

other SDKs, e.g. PyTorch and TensorFlow

PennyLane Demo:
● Create a simple PL model to fit a simple function
● Learn to initialise model weights
● Explore the impact of ansatz structure on performance
● Create minimalistic quantum models
● Learn the interaction of data encoding and ansatz
● Investigate different types of entangling
● Apply the best solution to more complex data
● Learn about stamina and wisdom in QML development

Key takeaways:
● Plan model development, tests and experiments
● Bad data encoding spoils the bunch!
● Strong entanglement improves the data fit
● More width and depth = the curse of dimensionality
● Carefully consider your quantum model initialisation
● Surprise - a single qubit model still works! (and well)
● More training does not solve the problems
● Data reuploading makes a huge difference!
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Recommended reading
on QML



 14 / 14

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.
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