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Variational quantum circuits are not executable!

Val‘iational Quantum |V|Od6|S They must first be instantiated, i.e. all of their

- : : : input and weight parameters must be assigned values!
= Parameterised Quan tum Circuits Ansatz parameters are trainable.
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feature map Ansatz
(with angle encoding) (with trainable parameters / weights + biases)
We can create a “variational” model = Classical input data is encoded into the feature map’s

a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each measurement
allowing rotation of a qubit state in

X, y or z axis (as per Bloch sphere).

parameters, setting the model’s initial quantum state.

The quantum state is then altered by an ansatz, which
consists of parameterised gates (operations), which alter
the circuit state. Ansatz parameters are trainable. Qubits
and parameters increase the model dimensionality.

The quantum state of the circuit is then measured and
interpreted as the model’s output in classical data form,
e.g. as binary values, integer or real value, a single
event’s probability or the probability distribution.

Pauli
rotations
Typically, but now always, the circuit
consists of three blocks:

* afeature map (input)
* an ansatz (processing)
° measurements (output)



Note that training will place qubit
states in areas x < 0 and arbitrarily

Data encoding strategies kiAol Gl

them from “pure” x >0 and z = 0.

Data encoding TN
, cos(x) z A\ 0 z A 0 7 sin(x)

There are many methods of data embedding, suchas: 7 | > SN -
the basis, angle, amplitude, QRAM, ... encoding, i N R\
In this workshop we will rely on angle encoding realised ol oo - Y N
as qubit state rotation by the angle defined by the data. " x N\ e x

Ry(+B) / * v
The rotation operators are always available in a quantum ¥ « ’
platform API (e.g. Rx, Ry, Rz or Rxyz). ol 0.rpi2 Wl osoi]
Typically, the encoding rotation is performed around x or y 0 mitiahsation. 1V R itaisaion 11
aXIS, Or both (aIIOWIng tWO Values per qu|t). s Measurement of individual qubit amplitudes
Rotations are relative to a specific qubit state, commonly Ny
starting at |0) state, or (|0)+|1))/sqrt(2), which require o

04

qubits to be initialised in these states.

The encoded value could be represented either by the
angular rotation, or the amplitude of the qubit projective 2
measurement (2).

0z

oo

ExpVal = P(0) - P{1)

Rotations were relative to

In some cases, input data is repeatedly encoded and o) imielation
interspersed with ansatz layers, called data reuploading, Input : i X
; ; Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
which improves the model performance. Ry angles used: 1047, 0.723, .004]
Measurements
Maria Schuld and Francesco Petruccione. Probabilities: [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]

Machine Learning with Quantum Computers. 2nd ed. Springer, 2021. Amplitudes: [0.5, 0.75, -0.5]



Angle Range: -6 to 6

. . Z . .
This example shows encoding Two principles of quantum data

values wrapping around the encodina:
Bloch sphere (possibly several 9

times), so that different values L.
are mapped into the same 1) distinct data values should

amplitude. map onto distinct amplitudes
(and angles)

2) the same data values should

always map into identical

amplitudes (and angles)

(violates principle 1)

This visualisation
shortened some of the
vectors to highlight their
difference, however,
they are all of length 1.

Special care must be taken in those cases where the values form some kind of

A n g I e e n co d i n g symmetry or repetition. For example in a case where we were to encode angular

values in the range of -2pi..2pi. In such a case values x and 2pi+x effectively

The GOOd , the B ad and the Ug |y represent the same angular position and their encoding should also be identical.

Angle Range: 0 to 3.141592653589793
0.1 ="blue" (long) | >1 = "deeppink" (medium) | -1...0 = "darkorange" (short) 0.t ="blue" (long) | >1t = "deeppink" (medium) | -1t..0 = "darkorange" (short)

Z

This example shows encoding
values wrapping around the
range of 0..2pi of the Bloch
sphere, ensuring that different
values are represented by
unique amplitudes.

The problem may arise
if we have the same
value represented
by two distinct
amplitudes

(violates principle 2)

The red dot represents
the same value which on
two occasions maps onto
two different angles and
thus two amplitudes.



global cost local cost

Commonly used 1 } v
yu _ -—
measurements and Interpretation or ——— } orisble b
Quantum circuits can be measured in many ways, e.g. o v1 32 ? j po 41 ¥2 ¥
« all qubits (global cost / measurement)
- afew selected qubits (local cost / measurement) “*| sampling ™ e sampling
e groups of qubits (each as a variable value) ox o7
And received in many different formats, e.g. f?;m or §oso
* as counts of outcomes (repeated measurements) ‘m .
* as probabilities of outcomes (e.g. P(|0111))) ' '
* as Pauli expectation values (i.e. of eigenvalues) ol O o 0.00 . .
*  as expectation of interpreted values (e.g. 0 to 15) seSeEEsg IR 4 v
— integer — logical ——

. as variance, etc.

Measurement Qutcomes

Or we can measure

Repeated measurement can be interpreted as outcomes of
expectation values

different types, e.g. estimation of the circuit state
. - N . . o4 and interpret them as a
as a pro_bablllty dlstrlbu_tlon (as is) series of values in the
* as a series of values (via expvals) "

ExpVval

* as a binary outcome:
single qubit measurement or parity of kets
° asan integer:
most probable ket in multi-qubit measurement
* as a continuous variable: -
probability of the selected ket (e.g. |0")) § & & & &

range [-1..+1]
I Beware that
adding 1 measurement =
doubles the number of outcomes!
0.1348]000) — 0.4045|001) + 0.6742|010) + 0.5394]011) + 0.2697|100)+ SO haVIng n

0[100) + 0[101) + 00]110) + 00[111)
measurements leads to
2" outcomes

%,
%4
[ 2

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.



Ansatz design and training

A simple quantum classifier ...

Beware that
adding qubits adds
parameters and entanglements!

The number of states represented by the
circuit grows exponentially with the
number of qubits!
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feature map Ansatz Data reuploading across circuit’s width and depth

(with angle encoding)

feature maps vary in:
structure and function

ansatze vary in:

* width (qubits #)

* depth (layers #)

* dimensions (param #)
 structure (e.g. funnelling)

* entangling (circular, linear, sca)

ansatz layers consist of:
rotation blocks and entangling blocks
of R(X, y, z) and CNOT gates

(with trainable parameters / weights + biases)

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy, hinge-
embedding, Kullback-Leibner divergence

rotation gates
alter qubit states
around x, Y, z
axes

Pauli

rotations different optimisers:

gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

ddddd
-

circuit execution on:
simulators (CPUSs), accelerators (GPUs) and
To execute a circuit we just apply it to input data real quantum machines (QPUs)

and the optimum parameters



DL models

and their optimisation

A Deep Learning model, such as a neural network,
aims to represent some problem.

The model takes inputs and calculates outputs
via the layers of interconnected nodes.

Each node has an activation, which is calculated as a
weighted sum of nodes on its input, a bias added, and

an activation function applied to produce its new value.

All possible model parameterisations (weights and
biases) form a multi-dimensional parameter space.

The model quality is assessed by the cost function,
where the lower the cost = the better the model.

The costs of model parameterisations form a manifold
over the parameter space - the cost landscape.

The optimisation process relies on the shape of the
landscape, which in turn is reflected in the gradient of
points on the cost landscape.

Gradient descent algorithms can assist in the
identification of the model with the minimum cost.

Backpropagation can also be used to efficiently
re-calculate DL model’s weights.

Gradients
An optimiser uses gradients to Gradients are local
recognise the shape of the cost i.e. during optimisation changes
landscape and to navigate it in to the model cost influence
search of such model parameters ~— gradients only in the immediate
that produce the lowest cost minimum neighbourhood of the model
Cost
Parameter
Space

Optimisation
Path

Model and
its cost

Cost
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® L
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Global
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Working with quantum models

Cost/
Hilbert Space vs Parameters Space Results and Fidelity  optimisers can only
gradients are see the shape of the
used here parameter space
. . Nonlocal interactions
Hilbert state space (dim = the number of Parameter e entatloments Optimisation
o Space ¢ E ) Path
qubits) is the quantum realm where the models Model and
. . . Cost :
and their states evolve in response to unitary Landscape its cost

operations as defined by the circuit gates

Data encoding brings in classical data into the Minimum

Hilbert space as unique and correlated

. . Entanglements twist
guantum states during the model execution g "

and deform the

Mapping from the Minimum parameter space

|
|

Layer_s of circuit gates determint_a t_he quantum space to : | : : creating non-local
evolution of the quantum model's initial state parameters space | 1 | | | interactions
: : . . : . . loses information I I | |
into its final state during the circuit execution | l| | B | |

. . . | | | .
Trainable parameter space is a classical || 1 : = = | Hilbert
multi-dimensional space of circuit gate e == b Space
parameters, which the optimiser navigates ’

) Parameterised

Entanglements (defined by CNOTSs) create Quantum Circuit
and correlate non-separable qubit states, creu _

. ircuit execution 52 ST
which alter the parameter space geometry, and takes place here Hamilionian ~ Model and its
also the cost landscape used by the optimiser . S evolving state
Measurement of individual qubits collapses gradients are IR AR
their states, consequently projecting the circuit calculated here SE PR AT EEAREE=S ‘I‘_ /
state onto classical outcomes 6~ - e iy JUPPEI

. ~~< d thei -

The mapping from the quantum space to the T~~l ops andielparams _ -

classical parameter loses some information! ~~o_ -



U Optimisation of quantum model
needs unique approaches due to the
emergence of non-local gradients

U Entangled qubits result in
correlated parameters and gradients,
so the changes to one are reflected
in the changes in distant others

The cost landscape of highly entangled
circuits commonly features narrow valleys

Also, backpropagation cannot be used

directly in training quantum circuits, as

their state is not directly accessible and
the measurement collapses the state

Gradient descend can still be used with
global gradients, i.e. those derived from
the geometry of the cost landscape

Stochastic optimisation techniques are
highly effective when the cost landscape
Is smooth (no quantum moise)

Other techniques are also available, such
as particle swarm optimisers, these
however are applicable to smaller models

Cost

Parameter Space with Entangled Qubit Gradients

Correlated gradient landscape due to quantum entanglement

Parameter Correlation

Entanglement

Narrow Valley

Due to Entanglement

8. (Qubit 2)

Quantum model optimisation

6: (Qubit 1)



PennyLane Demo

Everything is a function!

PennyLane (PL) ...

Supports differentiable programming paradigm
Integrates seamlessly with the Python

Has a range of operations for state preparation,
gates and measurements

Supports creation of flexible quantum algorithms
Executes on simulators and quantum hardware
Supports error mitigation

Extends its quantum gradients with those from JAX,
PyTorch, Keras, TensorFlow, or NumPy

Supports hybrid quantum-classical models

Allows training with hardware-compatible gradients
and higher-order derivatives

Provides numerous quantum models, such as:
QNNs, quantum kernels and Fourier models

Can be extended with models and optimisers from
other SDKs, e.g. PyTorch and TensorFlow

PennyLane Demo:

Create a simple PL model to fit a simple function

Learn to initialise model weights

Explore the impact of ansatz structure on performance
Create minimalistic quantum models

Learn the interaction of data encoding and ansatz
Investigate different types of entangling

Apply the best solution to more complex data

Learn about stamina and wisdom in QML development

Key takeaways:

Plan model development, tests and experiments
Bad data encoding spoils the bunch!

Strong entanglement improves the data fit

More width and depth = the curse of dimensionality
Carefully consider your quantum model initialisation
Surprise - a single qubit model still works! (and well)
More training does not solve the problems

Data reuploading makes a huge difference!
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PennyLane is an open-source Python 3 framework that fa-
ational circuits opens up  cilitates the optimization of quantum and hybrid quantum:
ues for near-term quan.  dlassical algorithms. It extends several seminal ma
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Hands-on Approach to Modern Quantum Algorithms Abstract

In these Lecture Notes, we provide a comprehensive introduction to the most recent ad-
vances in the application of machine learning methods in quantum sciences. We cover
the use of deep learning and kernel i snperviszd ised, and reinforce-
ment learning algori ificat ion of many-body quantum
) states, quantum feedback control, and quantum circuits optimization. Moreover, we in-

ELIAS F. COMBARRO troduce and discuss more specialized topics such as di i ing, gener-
SANUEL GONZALEZ-CASTILLO ative models, statistical approach to machine leaming, and quantum machine learning.

d by Alberto Di Megiio,
ad of Innovation - Coordinator CERN Quantum Technology Initative




Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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