
 1 / 14

Quantum Machine Learning
Introduction

Jacob L. Cybulski
Enquanted, Melbourne, Australia

QML workshop
QML team
QML and aims
Parameterised circuits
Data encoding

Angle encoding
The good, the bad and the ugly

State measurement
Quantum model training
Parameters optimisation
Model geometry and gradients
QML readings
PennyLane demo
Summary

11-12 October 2025, QPoland, Fundacja Quantum AI

Secrets revealed in this session:

To explore the principles of
quantum machine learning
models, their parameterisation
and optimisation

measurement

Pauli
rotations

We will assume
some knowledge of

Quantum Computing
ML and Python

Creative Commons CC BY-NC-ND

2 / 14

O
u

r
Q

M
L

 T
ea

m

Tomek Rybotycki

QML Researcher
SRI PAS, NCAC PAS, CEAI AGH, KPLabs

LinkedIn

Dr Paweł Gora

Coordinator of QPoland and
CEO of Fundacja Quantum AI
LinkedIn

Sebastian Zając

Assistant Professor
SGH Warsaw School of

Economics
LinkedIn

Jacob Cybulski
Founder, Researcher, Consultant

at Enquanted

and
Honorary A/Prof

In Quantum Computing
Deakin University

LinkedIn

https://www.linkedin.com/in/tomasz-rybotycki-01192582
https://www.mimuw.edu.pl/~pawelg
https://www.linkedin.com/in/pawelgora
https://sebastianzajac.pl/
https://www.linkedin.com/in/tomasz-rybotycki-01192582
https://www.linkedin.com/in/jacobcybulski/

 3 / 14

Quantum ML
aims of this workshop

Chemistry /
Pharmaceutical

Bio-
Technology

Medical /
Healthcare

Energy /
Resources

Aerospace /
Automotive

Transport /
Logistics

Materials /
Manufacturing

Finance /
Insurance Networks /

Security

Environment

Economy People

Organisations & Society

QML

Quantum
Mechanics

Computer
Science

Maths &
Stats

MLQC

QM
Maths

Jacob L. Cybulski, Quantum Business Series (Deakin, RMIT, ACS, Warsaw School of Economics)
Jacob L. Cybulski, Quantum Computing Intro Series (SheQuantum, Assoc of Polish Profs in Australia)

2021-2025

Aims for quantum computing people:
Learn about ML in QML

Aims for machine learning people:
Learn about Q in QML

this workshop aims at
developing the

understanding of and
practical skills in the

creation and application of
QML models

QML
 applications

QML
 applications

 4 / 14

Variational quantum circuits are not executable!
They must first be instantiated, i.e. all of their

input and weight parameters must be assigned values!
Ansatz parameters are trainable.

Variational Quantum Models
= Parameterised Quantum Circuits

We can create a “variational” model =
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each
allowing rotation of a qubit state in
x, y or z axis (as per Bloch sphere).

Typically, but now always, the circuit
consists of three blocks:

● a feature map (input)
● an ansatz (processing)
● measurements (output)

Classical input data is encoded into the feature map’s
parameters, setting the model’s initial quantum state.

The quantum state is then altered by an ansatz, which
consists of parameterised gates (operations), which alter
the circuit state. Ansatz parameters are trainable. Qubits
and parameters increase the model dimensionality.

The quantum state of the circuit is then measured and
interpreted as the model’s output in classical data form,
e.g. as binary values, integer or real value, a single
event’s probability or the probability distribution.

Classical
output data

measurement

Pauli
rotations

en
co

di
ng

qu
bi

ts m
ea

su
re

d
qu

bi
ts

input
block

rotation
block

entangling
block measurements

rotation
block

entangling
block

rotation
block

entangling
block

rotation
block

entangling
block

rotation
block

entangling
blockClassical

input data

feature map
(with angle encoding)

Ansatz
(with trainable parameters / weights + biases)

 5 / 14

sin(x)

Data encoding strategies
Data encoding

There are many methods of data embedding, such as:
the basis, angle, amplitude, QRAM, ... encoding,

In this workshop we will rely on angle encoding realised
as qubit state rotation by the angle defined by the data.

The rotation operators are always available in a quantum
platform API (e.g. Rx, Ry, Rz or Rxyz).

Typically, the encoding rotation is performed around x or y
axis, or both (allowing two values per qubit).

Rotations are relative to a specific qubit state, commonly
starting at |0⟩ state, or (|0⟩+|1⟩)/sqrt(2), which require
qubits to be initialised in these states.

The encoded value could be represented either by the
angular rotation, or the amplitude of the qubit projective
measurement (Z).

In some cases, input data is repeatedly encoded and
interspersed with ansatz layers, called data reuploading,
which improves the model performance.

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(-α)

Ry(+β)

y

[0]

+a

-b

cos(x)

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(+α)

Ry(+β)
y

[0]

+a

-b

Input
Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
Ry angles used: [1.047, 0.723, 2.094]

Measurements
Probabilities: [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]
Amplitudes: [0.5, 0.75, -0.5]

Rotation relative to
|0⟩ initialisation Rotation relative to

H initialisation

Rotations were relative to
|0⟩ initialisation

Note that training will place qubit
states in areas x < 0 and arbitrarily
around the z axis. Measurements
of such states cannot distinguish
them from “pure” x > 0 and z = 0.

 6 / 14

Angle encoding
The Good, the Bad and the Ugly

Two principles of quantum data
encoding:

1) distinct data values should
map onto distinct amplitudes
(and angles)

2) the same data values should
always map into identical
amplitudes (and angles)

This example shows encoding
values wrapping around the
Bloch sphere (possibly several
times), so that different values
are mapped into the same
amplitude.

(violates principle 1)

This example shows encoding
values wrapping around the
range of 0..2pi of the Bloch

sphere, ensuring that different
values are represented by

unique amplitudes.

The problem may arise
if we have the same

value represented
by two distinct

amplitudes

(violates principle 2)

This visualisation
shortened some of the
vectors to highlight their
difference, however,
they are all of length 1.

The red dot represents
the same value which on
two occasions maps onto
two different angles and
thus two amplitudes.

Special care must be taken in those cases where the values form some kind of
symmetry or repetition. For example in a case where we were to encode angular

values in the range of -2pi..2pi. In such a case values x and 2pi+x effectively
represent the same angular position and their encoding should also be identical.

 7 / 14

Commonly used
measurements and interpretation

Quantum circuits can be measured in many ways, e.g.
● all qubits (global cost / measurement)
● a few selected qubits (local cost / measurement)
● groups of qubits (each as a variable value)

And received in many different formats, e.g.
● as counts of outcomes (repeated measurements)
● as probabilities of outcomes (e.g. P(|0111⟩))
● as Pauli expectation values (i.e. of eigenvalues)
● as expectation of interpreted values (e.g. 0 to 15)
● as variance, etc.

Repeated measurement can be interpreted as outcomes of
different types, e.g.

● as a probability distribution (as is)
● as a series of values (via expvals)
● as a binary outcome:

single qubit measurement or parity of kets
● as an integer:

most probable ket in multi-qubit measurement
● as a continuous variable:

probability of the selected ket (e.g. |0n⟩)

or

or

integer logical

float

variable a

variable b

global cost local cost

Or we can measure
expectation values
of the circuit state
and interpret them as a
series of values in the
range [-1..+1]

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

Beware that
adding 1 measurement →

doubles the number of outcomes!

So... having n
measurements leads to

2n outcomes

samplingsampling

estimation

 8 / 14

Ansatz design and training
A simple quantum classifier ...

feature maps vary in:
structure and function

ansatze vary in:
● width (qubits #)
● depth (layers #)
● dimensions (param #)
● structure (e.g. funnelling)
● entangling (circular, linear, sca)

ansatz layers consist of:
rotation blocks and entangling blocks
of R(x, y, z) and CNOT gates

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy, hinge-

embedding, Kullback-Leibner divergence

different optimisers:
gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit execution on:
simulators (CPUs), accelerators (GPUs) and

real quantum machines (QPUs)

en
co

di
ng

qu
bi

ts m
ea

su
re

d
qu

bi
ts

input
block

rotation
block

entangling
block measurements

rotation
block

entangling
block

rotation
block

entangling
block

rotation
block

entangling
block

rotation
block

entangling
block

measurement

Pauli
rotations

rotation gates
alter qubit states
around x, y, z
axes

(entanglement)(rotation)

Beware that
adding qubits adds

parameters and entanglements!

The number of states represented by the
circuit grows exponentially with the

number of qubits!

To execute a circuit we just apply it to input data
and the optimum parameters

Ansatz
(with trainable parameters / weights + biases)

feature map
(with angle encoding)

Data reuploading across circuit’s width and depth

 9 / 14

θ2 θ1

DL models
and their optimisation

 A Deep Learning model, such as a neural network,
aims to represent some problem.

 The model takes inputs and calculates outputs
via the layers of interconnected nodes.

 Each node has an activation, which is calculated as a
weighted sum of nodes on its input, a bias added, and
an activation function applied to produce its new value.

 All possible model parameterisations (weights and
biases) form a multi-dimensional parameter space.

 The model quality is assessed by the cost function,
where the lower the cost = the better the model.

 The costs of model parameterisations form a manifold
over the parameter space - the cost landscape.

 The optimisation process relies on the shape of the
landscape, which in turn is reflected in the gradient of
points on the cost landscape.

 Gradient descent algorithms can assist in the
identification of the model with the minimum cost.

 Backpropagation can also be used to efficiently
re-calculate DL model’s weights.

Gradients are local
i.e. during optimisation changes
to the model cost influence
gradients only in the immediate
neighbourhood of the model

Cost

Local
Minimum

Cost
Landscape

Optimisation
Path

Parameter
Space

Noise!

Global
Minimum

An optimiser uses gradients to
recognise the shape of the cost
landscape and to navigate it in

search of such model parameters
that produce the lowest cost

Model and
its cost

Gradients

minimum

 10 / 14

Working with quantum models
Hilbert Space vs Parameters Space

● Hilbert state space (dim = the number of
qubits) is the quantum realm where the models
and their states evolve in response to unitary
operations as defined by the circuit gates

● Data encoding brings in classical data into the
Hilbert space as unique and correlated
quantum states during the model execution

● Layers of circuit gates determine the
evolution of the quantum model's initial state
into its final state during the circuit execution

● Trainable parameter space is a classical
multi-dimensional space of circuit gate
parameters, which the optimiser navigates

● Entanglements (defined by CNOTs) create
and correlate non-separable qubit states,
which alter the parameter space geometry, and
also the cost landscape used by the optimiser

● Measurement of individual qubits collapses
their states, consequently projecting the circuit
state onto classical outcomes

● The mapping from the quantum space to the
classical parameter loses some information!

θ2 θ1

Cost /
Fidelity

Local
Minimum

Cost
Landscape

Optimisation
Path

Parameter
Space

Hilbert
Space

Noise!

Real
Solution
(State)

Global
Minimum

Hamiltonian
Problem

Representation

Optimisers can only
see the shape of the
parameter space

Parameterised
Quantum Circuit

Nonlocal interactions
(due to entanglements)

Mapping from the
quantum space to
parameters space
loses information

Evolving model states,
as influenced by unitary

ops and their params

Entanglements twist
and deform the
parameter space
creating non-local
interactions

Model and its
evolving state

Model and
its cost

Results and
gradients are

calculated here

Results and
gradients are

used here

Circuit execution
takes place here

 11 / 14

 Optimisation of quantum model
needs unique approaches due to the
emergence of non-local gradients

 Entangled qubits result in
correlated parameters and gradients,
so the changes to one are reflected
in the changes in distant others

θ₁ (Qubit 1)

Cost

θ₂ (Qubit 2)

Q₁ Q₂

Parameter Correlation

Entanglement

Start

Global Minimum

Narrow Valley

Due to Entanglement

Parameter Space with Entangled Qubit Gradients
Correlated gradient landscape due to quantum entanglement

 The cost landscape of highly entangled
circuits commonly features narrow valleys

 Also, backpropagation cannot be used
directly in training quantum circuits, as
their state is not directly accessible and
the measurement collapses the state

 Gradient descend can still be used with
global gradients, i.e. those derived from
the geometry of the cost landscape

 Stochastic optimisation techniques are
highly effective when the cost landscape
is smooth (no quantum moise)

 Other techniques are also available, such
as particle swarm optimisers, these
however are applicable to smaller models

Quantum model optimisation

 12 / 14

PennyLane Demo
Everything is a function!

PennyLane (PL) …
● Supports differentiable programming paradigm
● Integrates seamlessly with the Python
● Has a range of operations for state preparation,

gates and measurements
● Supports creation of flexible quantum algorithms
● Executes on simulators and quantum hardware
● Supports error mitigation
● Extends its quantum gradients with those from JAX,

PyTorch, Keras, TensorFlow, or NumPy
● Supports hybrid quantum-classical models
● Allows training with hardware-compatible gradients

and higher-order derivatives
● Provides numerous quantum models, such as:

QNNs, quantum kernels and Fourier models
● Can be extended with models and optimisers from

other SDKs, e.g. PyTorch and TensorFlow

PennyLane Demo:
● Create a simple PL model to fit a simple function
● Learn to initialise model weights
● Explore the impact of ansatz structure on performance
● Create minimalistic quantum models
● Learn the interaction of data encoding and ansatz
● Investigate different types of entangling
● Apply the best solution to more complex data
● Learn about stamina and wisdom in QML development

Key takeaways:
● Plan model development, tests and experiments
● Bad data encoding spoils the bunch!
● Strong entanglement improves the data fit
● More width and depth = the curse of dimensionality
● Carefully consider your quantum model initialisation
● Surprise - a single qubit model still works! (and well)
● More training does not solve the problems
● Data reuploading makes a huge difference!

 13 / 14

Recommended reading
on QML

 14 / 14

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

	Slide 1
	Dashboard
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

