QML hybrid quantum-classical models

Structure and processes of a hybrid
PyTorch / PennyLane model
Brief introduction to
hybrid reservoir computing

Objective of this session: 1 \ PennyLane demo for some!
. ; Dive into action for others!

To undertake a brave, hands-on,

and independent exploration of

hybrid quantum-classical

machine learning, with the

minimum of assistance!

Quantum Machine Learning __measurement

Pauli
rotations

Jacob L. Cybulski

Enquanted, Melbourne, Australia

Hybrid

Quantum-Classical Models

Hybrid quantum-classical models in PyTorch is easy,
as neural networks with PennyLane quantum layers.

Example structure of such a model is to the right.

Data preparation, training and scoring are identical for both.
Just keep it in mind that a quantum model must receive data
in the correct format for quantum encoding and then produce
data in the format understood by the next neural net layer.

Ensure that the quantum layer actually adds value
to the classical neural network models.

Test hybrid model performance against pure classical models
and pure quantum models.

A good example where a quantum model actually adds value
to the classical solution is in hybrid reservoir computing.

As quantum models transform input data into large-
dimensional Hilbert space, they are able to perform the task
needed by classical reservoir models, i.e. to increase data
dimensionality to assist linear separability of information.

##HHH Custom PyTorch/PennylLane hybrid model for logistic regression
class LogisticRegression(torch.nn.Module):

#Hi#
def

#Hi#
def

#Hi#
def

Make predictions

def

build the constructor
~init (self, sim, n wires, n layers=1, shots=None):
super().__init_ ()

self.sim = sim

self.n wires = n wires
self.n_layers = n_layers
self.shots = shots

PyTorch Neural Net mixing
classical layers with
quantum PennyLane layers

A very simple hybrid model
gmodel = self.qlayer()
lin5 = torch.nn.Linear(2, 1)
layers = [gmodel, 1in5]
self.model = torch.nn.Sequential(*layers)

Quantum layer
Classical layer

PyTorch layer around the PennylLane model
qlayer(self):

Specify a device
dev = gml.device(self.sim, wires=self.n wires, shots=self.shots)

Define the quantum model and its circuit (or node, save it for later)
model_pl = gmodel(self.n _wires)
self.model _gc = gml.QNode(model pl, dev, interface='torch')

Define the shape of the model weight parameters

Note that the name "weights" must match the param name defined in function
"model_pl" which in our case is _qmodel(inputs, weights)

weights_shapes = {"weights": gshape(self.n _wires, n_layers=self.n_layers)}

Turn the circuit into a Torch-compatible quantum layer
gqlayer = qml.qgnn.TorchLayer(self.model qc, weight shapes=weights shapes)
return qlayer

Return the quantum model circuit
gmodel qc(self):
return self.model _gc

Here is a utility function to return
the quantum model used in neural
network structure
(e.g. for drawing)

forward(self, x):

y_pred = self.model(x)
return y_pred

Applications include time-series forecasting, speech recognition and

i i video analysis, control of robots or autonomous vehicles, as well as,
Rese I‘VOI r CO m p Utl ng predicting weather patterns and stock markets.
for temporal data (series and signals)

Optfimisgtilon
. D T Tt of model ------
_ . Classical Reservoir Model | parameters |
Classical RC models are derived from recurrent neural networks. | Small ;
They are especially useful when working with temporal data. Small Large Large | Fspace: Small |
Reservoir computing utilises a reservoir — a large sparse neural size size size v size !
network of randomly initialised and fixed weights, which transform Reservoir Update Reservoir Readout Layer
input into a higher-dimensional space. In high-dimensional space, it Sl state ‘s“°““R:"ge Rearession)
. " Large Solution Space —

data can be easily separated (classified) by using a simple linear Fixed Weights st states, ~ Input_ % Solution”
model (readout layer), such a ridge regression. leakagerate i High Dim

] o) Classical Reservoir Classical Model
The reservoir should be able to echo or retain information about A
past inputs for a short period, making it suitable for processing | Model training by
sequential data. However, the influence of past input on the o presenting pairs of input |
reservoir state should fade away over time — memory leakage. and output examples

. S Optimisation Hybrid Quantum-Classical Design

Hybrid Reservoir Model e 0 _ , ,
| mall P | Hybrid quantum reservoir models consist of two parts:
| params | .
ata. wramable i | space S | « quantum reservoir model (echo and leakage)
e v | classical readout model (e.g. ridge regression)
State State State Simple ML Model .
Preparation Evolution | Measurement (e & Mo Regiessn) Quantum reservoir parameters are sparse, random and
cee | s el e fixed (no need for training).
Hilbert Space
The aim of the quantum model is for input to gain in
Quantum Reservoir Classical Model dimensionality, to increase linear separability.

Model training by The classical readout is very simple and easy to train.

”””””””””” prgggngtﬁglﬁaégzgpﬁgm Hybrid reservoirs are highly efficient and accurate.

The great finale!

Any reflections?
Any requests?
Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4

