QML hybrid quantum-classical models

Structure and processes of a hybrid
PyTorch / PennyLane model
Brief introduction to
hybrid reservoir computing
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Hybrid

Quantum-Classical Models

Hybrid quantum-classical models in PyTorch is easy,
as neural networks with PennyLane quantum layers.

Example structure of such a model is to the right.

Data preparation, training and scoring are identical for both.
Just keep it in mind that a quantum model must receive data
in the correct format for quantum encoding and then produce
data in the format understood by the next neural net layer.

Ensure that the quantum layer actually adds value
to the classical neural network models.

Test hybrid model performance against pure classical models
and pure quantum models.

A good example where a quantum model actually adds value
to the classical solution is in hybrid reservoir computing.

As quantum models transform input data into large-
dimensional Hilbert space, they are able to perform the task
needed by classical reservoir models, i.e. to increase data
dimensionality to assist linear separability of information.

##HHH Custom PyTorch/PennylLane hybrid model for logistic regression
class LogisticRegression(torch.nn.Module):

#Hi#
def

#Hi#
def

#Hi#
def

### Make predictions

def

build the constructor
~init (self, sim, n wires, n layers=1, shots=None):
super().__init_ ()

self.sim = sim

self.n wires = n wires
self.n_layers = n_layers
self.shots = shots

PyTorch Neural Net mixing
classical layers with
quantum PennyLane layers

# A very simple hybrid model
gmodel = self.qlayer()
lin5 = torch.nn.Linear(2, 1)
layers = [gmodel, 1in5]
self.model = torch.nn.Sequential(*layers)

# Quantum layer
# Classical layer

PyTorch layer around the PennylLane model
qlayer(self):

# Specify a device
dev = gml.device(self.sim, wires=self.n wires, shots=self.shots)

# Define the quantum model and its circuit (or node, save it for later)
model_pl = gmodel(self.n _wires)
self.model _gc = gml.QNode(model pl, dev, interface='torch')

# Define the shape of the model weight parameters

# Note that the name "weights" must match the param name defined in function
# "model_pl" which in our case is _qmodel(inputs, weights)

weights_shapes = {"weights": gshape(self.n _wires, n_layers=self.n_layers)}

# Turn the circuit into a Torch-compatible quantum layer
gqlayer = qml.qgnn.TorchLayer(self.model qc, weight shapes=weights shapes)
return qlayer

Return the quantum model circuit
gmodel qc(self):
return self.model _gc

Here is a utility function to return
the quantum model used in neural
network structure
(e.g. for drawing)

forward(self, x):

y_pred = self.model(x)
return y_pred



Applications include time-series forecasting, speech recognition and

i i video analysis, control of robots or autonomous vehicles, as well as,
Rese I‘VOI r CO m p Utl ng predicting weather patterns and stock markets.
for temporal data (series and signals)
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Model training by The classical readout is very simple and easy to train.

”””””””””” prgggngtﬁglﬁaégzgpﬁgm Hybrid reservoirs are highly efficient and accurate.




The great finale!

Any reflections?
Any requests?
Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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