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Secrets revealed in this session:

To look behind the doors of 
quantum classification!
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Classical classification /
Quantum classification

Class of a data sample is a group defined by a unique 
nominal value of one of its attributes. For instance 
vehicles can be grouped by:

● Colour, such as “red”, “yellow” or “green”
● Size, e.g. “small”, “medium” or “large”

Classification is the process of classifying data 
samples based on their attribute values, i.e. deciding 
what class value should be given to their label attribute, 
with a view to determine the membership of a sample in 
a particular group:

● Vehicles type, such as “sedan” or “truck”, which 
can be predicted from other attributes, e.g. size 
and colour

Classifier is a model predicting the class of a sample, 
and capable of automating classification of data 
recorded in the future.

Examples where quantum ML outperformed classical ML: 
(1) high dimensional feature spaces, (2) dimensionality reduction, 
(3) sampling from complex distributions, (4) simulation of chemical 
properties and reactions, (5) quantum Monte Carlo methods, etc.

Classical machine learning offers numerous models and 
algorithms for highly efficient classification. Their quantum 
counterparts are still in research phase.
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Data preparation for classification
Class imbalance and preparation of predictors

Due to limited qubit resources, 
quantum classifiers are sensitive to 
class imbalance!

Often we have a minority class 
(very small) of positive examples 
(important to us). 

In cases of the class imbalance, 
we cannot trust accuracy as it can 
be high even though the most, or 
all, positive examples are 
misclassified.

Instead, we can (and should) use a 
Cohen kappa statistic, which adjusts 
accuracy based on the distribution 
of class values. 

● Kappa > 0.6 
is considered good!

● High accuracy but 
low kappa is poor!

In cases of class imbalance, some 
classifiers may produce results 
biased towards the majority class.

The solution may involve 
rebalancing data sample by either:

● over-sampling the minority class or 
● under-sampling the majority class.

Balancing of training data may lead 
to a better model. 

However, balancing of test data 
leads to incorrect accuracy.

It is best to balancing training data 
and to use the unbalanced data for 
validation and testing.

SMOTE or Synthetic Minority 
Oversampling Technique 
is one of the most commonly used 
technique for class oversampling.

SMOTE creates synthetic (not real) 
data points in the smallest label 
class. And you can perform SMOTE 
balancing iteratively for all classes.

However, in some circumstances, 
some models can easily deal with 
unbalanced samples.

In which case, by balancing data the 
model performance may drop!

Always test if sample balancing 
actually improves the model 
performance or not.

Weighing data examples (by inverse 
of class frequency) is an alternative 
approach in classical ML. In training 
with weighing, e.g. weights are used 
to penalise majority class examples.

PyTorch-Ignite, “CohenKappa”,
https://pytorch.org/ignite/generated/ignite.metrics.CohenKappa.html

Imbalanced-learn, “SMOTE”,
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

All previously mentioned concerns 
about analysis and preparation of 
predictors are still applicable to 
quantum classification.
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PennyLane / PyTorch
Neural network structure

The structure of a PyTorch classic model is almost identical to 
that of a PyTorch model with a quantum model as it layer! 
What is different is the specification of their layers.

PyTorch with
PennyLane layer

Pure PyTorch

Both models are designed as 
PyTorch neural net classes.

Both initialise their model 
instances by saving the most 
important parameters (self), 

and then creating and saving 
their models (self.model) as 

sequences of layers.

Both define and create neural 
network layers. The quantum 
model’s QNode with its shape 

details was wrapped in a 
TorchLayer. The QNode was 

created with a “torch” interface 
and a device specified via 

parameters.

Both models identify the 
forward function, which 
provides a method of 

calculating outputs from 
inputs.
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PennyLane / PyTorch
Model training

Training
of PyTorch NN with
a PennyLane layer

Training
of Pure PyTorch NN

Both models are trained in the same way.
PyTorch has no knowledge of the two 

models differences!

The training function receives data (X and y), 
cost and accuracy calculating functions, the 
optimiser, the required number of training 

epochs, and other variables used during the 
process.

Model training starts with the initialisation of 
lists to collect training cost and accuracy at 

each optimisation step.

Then the model training starts.

Training is conducted in a loop utilising 
gradients in the model weights.

First, the optimiser is instructed to
reinitialise its gradients.

Second, it performs the forward step
by applying the model to data (X) to

receive the model predictions on output.
Third, the predictions are compared

with the expected values (y) and
the cost of differences is calculated.

Fourth, the optimiser takes a backward
step to recalculate all model weights.
Fifth, the optimiser then prepares for

the next optimisation step.
Finally, we collect all performance

indicators and print the partial results.

Invocation of the
PennyLane model training
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In search of the optimum
Grid search

● The performance of a quantum classifier depends on the 
combination of its circuit characteristics, e.g. 

– the number of qubits and the number of layers

as well as the optimiser and training process hyper-
parameters, e.g.

– the learning rate and the number of epochs
– the optimiser in use, e.g. SGD, RMSprop, Adam

● We tune the model by experimenting with all of these 
training process hyper-parameters.

● Trial and error is a possible approach! 
However, a systematic approach is always preferred!

● For a single parameter, a feasible approach is to construct 
a loop over a list of hyper-parameter values and then log, 
chart and review the performance indicators.

● Scikit-learn, as well as PyTorch (via skorch), also provides 
support (via its operators) for the systematic exploration of 
multiple model parameters in a grid search.

● There are two possible ways of exploring 
multiple parameter values, i.e. with:

– Grid search of parameter values, where 
for each parameter we supply a list of its 
possible values and we test the model on 
all their combinations;

– Random grid search, where test points 
are generated randomly, each having a 
combination of (most likely) unique 
parameter values.
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Grid Layout
(16 tests)

Random Layout
(12 tests)

Error
Surface

The collection of parameters may include the more important 
parameters, which may be better at identifying distinguishing 
features of the error surface than unimportant parameters.

Scikit Learn, “Tuning the hyper-parameters of an estimator”,
https://scikit-learn.org/stable/modules/grid_search.html

Adrian Tam, “How to Grid Search Hyperparameters for PyTorch Models”,
https://machinelearningmastery.com/how-to-grid-search-hyperparameters-for-pytorch-models/
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PennyLane / PyTorch
Results

Model scoring and plotting 
of results is also identical!

As we are training with small 
data sets, the classical
“plain vanilla” PyTorch
models tend to quickly 

overtrain.

There is a lot more tuning 
required of the quantum
model but its plots are
also more beautiful!

Performance plots
from training classical
models look as if they
were produced by a

very nervous but very
successful gambler!

Note that IMHO
if a quantum model on

trivial (not quantised) data
exceeds the performance

of a classical model,
it usually means that you

have not tuned it properly!

Sadly,
this is the case here!

PyTorch with
PennyLane layerPure PyTorch

Cost (MSE) Cost (MSE)

Accuracy

Accuracy
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Binomial classification
Adjusting the threshold

• Assume we have two classes - positive and negative.
• When a positive class is correctly classified, it is 

called true-positive (TP), the negative class is called 
true-negative (TN).

• When a positive class is incorrectly classified it is 
called false-negative (FN), the incorrectly classified 
negative class is called false-positive (FP).

• The prediction is defined by confidence factors, i.e. 
when the confidence of a positive class is greater 
than a certain threshold, (e.g. 0.5), it is concluded 
that classification is positive, else it is negative.

• The threshold can be changed to maximise some 
performance indicator (e.g. the car is risky).Consider these 20 data points, classified with different 

confidence factors from 0 to 1. Depending on the threshold 
they will be classified differently and the classifier 
performance will also be different.

We can visualise the classifier performance by plotting an 
ROC (Receiver Operating Characteristic) chart of all 
possible pairs of FP rate vs TP rate when varying the 
threshold (see below). The best classifier has the largest 
area under the curve (AUC).

AUC: area 
under the 

curve
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Scikit Learn, “Tuning the decision threshold for class prediction”,
https://scikit-learn.org/stable/modules/classification_threshold.html

FPR

TPR

0.30 th

0.75 th

TPR = TP / P
FPR = FP / N
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Barriers to quantum classification

Some Problems Possible Solutions
Poorly chosen embeddings can lead to 
loss of information or biases.

● Avoid simple embeddings for complex data (e.g., basic angle encoding), as 
they may not capture nonlinear relationships. 

● Consider trainable embeddings (e.g., quantum neural networks).

Quantum models are sensitive to
imbalanced data, due to limited qubit 
resources. 

● Oversampling or hybrid classical-quantum approaches may be needed.

Since classifiers rely on discrete decision 
boundaries, barren plateaus can lead to 
random guessing behaviour.

● Regularisation may help (via classical post-processing).

Quantum classifiers can overfit due to 
limited training data or excessive circuit 
expressivity.

● Use dimensionality reduction (e.g., PCA) before encoding or employ classical 
regularisation (e.g., dropout in hybrid models).

Quantum classifiers might appear to work 
well on training data but fail on test data due 
to quantum-specific artefacts,

● Always compare against classical models and their performance (e.g., SVM, 
neural networks). Quantum advantage is rare!
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PennyLane Demo
Engineer quantum solutions!

PennyLane Demo:
● Explore insurance risk data 
● Consider class order and the need for shuffling
● Reduce your data dimensionality (test and compare)
● Play with hyper-parameters to improve performance
● Apply the best model to new data

Key takeaways:
● Quantum modelling is an engineering task
● There is more to success than a clever model
● Data encoding is (again) crucial to performance
● Dimensionality reduction is crucial to performance
● Design your model tests – use grid search!
● Experiment with the ansatz parameters
● Learn from classical ML how to measure accuracy
● Think about class imbalance
● Once model is trained, you can still improve accuracy!

Dataset 1: Automobile risk assessment

Dataset 2: Sonar

Image source: Unsplash and Freepik
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Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.
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Priors and classification

Another way is to balance all data, for training and 
validation, but then recalculate validation results.

The class probability distribution in the population is 
called prior probability (or priors).

Let’s say we have 900 examples, split 2:1 between 
negative vs positive cases, we are interested in positives.

If we trained a model on this data, it will favour the 
negative cases, it will over-train on them.

We can resample data (e.g. under-sample the negatives).

Now we have balanced data, better for model training.

We then validate the model and let us say we found 50% 
of negatives and 25% of positives to be misclassified.

Our misclassification rate is: 0.25+0.125=0.375

However, if we deploy the model to work with the 
population data we can expect a very different result – we 
need to scale this result to reflect the proportions In the 
population, i.e. 2:1 (not 1:1).

The new misclassification rate is 1/3+0.25x1/3=0.417

Detection rate of positive cases TP/FN is the same. 

The cost of handling negative cases went up.
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Some data mining software can perform these calculations automatically,
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