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Variational Quantu m Models Ansatz parameters are trainable.

Each parameter defines a dimension in

= Parameterised Quantum Circuits the model’s parameter space. Classical
output data
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feature map Ansatz
(with angle encoding) (with trainable parameters / weights + biases)
We can create a “variational” model = Classical input data is encoded into the feature map’s

a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each measurement
allowing rotation of a qubit state in

X, y or z axis (as per Bloch sphere).

parameters, setting the model’s initial quantum state.

The quantum state is then altered by an ansatz, which
consists of parameterised gates (operations), which
alter the initial guantum state.

Pauli
rotations

-
-

Typically, but now always, the circuit

consists of three blocks: ~ ’ The quantum state of the circuit is then measured and

interpreted as the model’s output in classical data form,
e.g. as binary values, integer or real value, a single
event’'s probability or the probability distribution.

* afeature map (input)
* an ansatz (processing)
° measurements (output)



Note that training will place qubit
states in areas x < 0 and arbitrarily

Data encoding strategies e e reer

them from “pure” x >0 and z = 0.

Data encoding TN
, cos(x) z A\ 0 z A " 7 sin(x)

There are many methods of data embedding, suchas: 7 | O SN -
the basis, angle, amplitude, QRAM, ... encoding, i N R\
In this workshop we will rely on angle encoding realised ] ool - Y N
as qubit state rotation by the angle defined by the data. - x N\ e x

Ry(+B) / * v
The rotation operators are always available in a quantum ¥ « ’
platform API (e.g. Rx, Ry, Rz or Rxyz). ol (0rpi2 Wl ospi]
Typically, the encoding rotation is performed around x or y 0 mitiahsation. 1V R itaisaion 11
aXIS, Or both (aIIOWIng tWO Values per qu|t). s Measurement of individual qubit amplitudes
Rotations are relative to a specific qubit state, commonly Ny
starting at |0) state, or (|0)+|1))/sqrt(2), which require o
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qubits to be initialised in these states.

The encoded value could be represented either by the
angular rotation, or the amplitude of the qubit projective 2
measurement (2).

0z

oo

ExpVal = P(0) - P{1)

Rotations were relative to

In some cases, input data is repeatedly encoded and o) imieliation
interspersed with ansatz layers, called data reuploading, Input : i X
; ; Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
which improves the model performance. Ry angles used: 1047 0.723, .004]
Measurements
Maria Schuld and Francesco Petruccione. Probabilities: [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]

Machine Learning with Quantum Computers. 2nd ed. Springer, 2021. Amplitudes: [0.5, 0.75, -0.5]



Angle encoding
The Good, the Bad and the Ugly

Angle Range: -6 to 6 Angle Range: 0 to 3.141592653589793
0..1t="blue" (long) | >m = "deeppink" (medium) | -11..0 = "darkorange" (short) 0.1t ="blue" (long) | >mt = "deeppink" (medium) | -11..0 = "darkorange" (short)

. . z .. Z . .
This example shows encoding Two principles of quantum data This example shows encoding
values wrapping around the encoding: values wrapping around the
Bloch sphere (possibly several range of 0..2pi of the Bloch
times), so that different values L. sphere, ensuring that different
are represented by the same 1) distinct data values should values are represented by
amplitude. map onto distinct amplitudes unique amplitudes.

(and angular codes) :
2) the same data values should
always map into identical
amplitudes (and angular
codes)

The problem may arise
if we have the same
value represented
by two distinct
amplitudes

(violates principle 1)

(violates principle 2)

This visualisation The red dot represents
shortened some of the the same value which on
vector to highlight their two occasions maps onto
difference, however, two different angles and
they are all of length 1. thus two amplitudes.



Commonly used ]

measurements and interpretation or _

.
variable a
variable b

There are many ways of obtaining the outcome of a

circuit execution, e.g. we can measure:
H 0.32 100 0900
« all qubits (global cost / measurement)
* afew selected qubits (local cost / measurement) o2
* groups of qubits (each as a variable value) 2016 or 5
e as counts of outcomes (repeated measurements) £ E
« as probabilities of outcomes (e.g. P(|0111))) |
* as Pauli expectation values (i.e. of eigenvalues) ) .
* as expectation of interpreted values (e.g. 0 to 15) < 1 v
as variance, etc. - [nteger ~— logical —
Measurement Qutcomes
Repeated circuit measurement can be interpreted as . e

of the circuit state
and interpret them as
a series of values

outcomes of different types, e.g.
* as a probability distribution (as is)
* as a series of values (via expvals)

* as a binary outcome: 0
single qubit measurement or parity of kets

04

02

I Beware that
adding 1 measurement —
doubles the number of outcomes!

ExpVval

Y as an Integer. -02 :?”:g:t‘z‘l{:)l;l;).ir)(:;\{!ﬁ?))i(r])(.ﬂﬁ]‘l;f)\mm+n';394\011)+02m7\100)+ SO hav|ng n
) . . . measurements leads to 2"
most probable ket in multi-qubit measurement o == , outcomes
°* as a continuous variable: § & & §'m§

ili n Maria Schuld and Francesco Petruccione.
prObablllty of the selected ket (eg |0 >) Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.



Ansatz design and training

A simple quantum classifier ...

Beware that
adding qubits adds
parameters and entanglements!

The number of states represented by the
circuit grows exponentially with the
number of qubits!
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feature map Ansatz

(with angle encoding)

feature maps vary in:
structure and function

ansatze vary in:

* width (qubits #)

* depth (layers #)

* dimensions (param #)
 structure (e.g. funnelling)

* entangling (circular, linear, sca)

ansatz layers consist of:
rotation blocks and entangling blocks
of R(X, y, z) and CNOT gates

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy,
hinge-embedding, Kullback-Leibner divergence

rotation gates
alter qubit states
around X, Y, z
axes

Pauli

rotations different optimisers:

gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

ddddd
-

circuit execution on:
simulators (CPUSs), accelerators (GPUs) and

To execute a circuit we just apply it to input data real quantum machines (QPUSs)

and the optimum parameters



Classical model optimisation

Cost

Gradient Descent Path

Gradients are local, i.e. their changes influence only their immediate neighbourhood

Problem-solving with DL models

Gradients

61

Weights

02

A Deep Learning model aims
to represent the problem.

It is parameterised with
weights and biases.

The model quality is linked to
the cost function, where the
lower the cost, the better is
the model.

The costs of all possible
model parameterisations,
form a multi-dim surface, or
the cost landscape.

The optimisation process
relies on the shape of the
landscape, which in turn is
reflected in the gradient of
points on the cost surface.

Gradient descent algorithms
can assist in the identification
of the model with the
minimum cost.

Backpropagation can also be

used to very efficiently re-
calculate NN weights.



O The abstract mathematical model Problem-SOI\[ing with QML

represents the problem to be solved, .. .
e.g. in the form of a Hamiltonian Quantum model optimisation

U The Hamiltonian defines some geometry in
Hilbert space with the optimum solution
associated with the optimum energy

Energy
U The ansatz of a quantum circuit approximates
the Hamiltonian and therefore the problem

U The parameters of the ansatz define a
parameter space that overlaps and intersects .
. . nsat:
the Hamiltonian prOblem space ParameterZSpace

U Our search for the problem solution is hence
restricted to the ansatz parameter space

O |deally, the selected optimiser and the
cost function should understand the principles
and processes of quantum models, e.g.
Quantum Natural Gradient (QNG) optimiser

U The QNG method defines gradients, which are
then calculated for the cost landscape (or the
manifold), which spans the ansatz geometry ~ TTe-._ |

U The QNG optimiser can then identify a ,
local optimum solution for this ansatz o ing compiex than problem-

J  Noise can prevent finding the local optimum

Hilbert Space
Hamiltonian
Problem
Representation

Cost Landscape

Local
Minimum

Global
Minimum
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U Optimisation of quantum model
needs unique approaches due to the
emergence of non-local gradients

U Entangled qubits result in
correlated parameters and gradients,
so the changes to one are reflected
in the distant others

The cost landscape of highly entangled
circuits commonly features narrow valleys

Also, backpropagation cannot be used
directly in training quantum circuits, as
their state is not directly accessible and
the measurement collapses the state

Gradient descend can still be used with
global gradients, i.e. those derived from
the geometry of the cost landscape

Stochastic optimisation techniques are
highly effective when the cost landscape
Is smooth (no quantum moise)

Other techniques are also available, such
as particle swarm optimisers, these
however are applicable to smaller models

Cost

Parameter Space with Entangled Qubit Gradients

Correlated gradient landscape due to quantum entanglement

Parameter Correlation

Entanglement

Narrow Valley

Due to Entanglement

8. (Qubit 2)

Quantum model optimisation

6: (Qubit 1)



PennyLane Demo

Everything is a function!

PennyLane (PL) ...

Supports differentiable programming paradigm
Integrates seamlessly with the Python

Has a range of operations for state preparation,
gates and measurements

Supports creation of flexible quantum algorithms
Executes on simulators and quantum hardware
Supports error mitigation

Extends its quantum gradients with those from JAX,
PyTorch, Keras, TensorFlow, or NumPy

Supports hybrid quantum-classical models

Allows training with hardware-compatible gradients
and higher-order derivatives

Provides numerous quantum models, such as:
OQNNs, quantum kernels and Fourier models

Can be extended with models and optimisers from
other SDKs, e.g. PyTorch and TensorFlow

PennyLane Demo:

Create a simple PL model to fit a simple function

Learn to initialise model weights

Explore the impact of ansatz structure on performance
Create minimalistic quantum models

Learn the interaction of data encoding and ansatz
Investigate different types of entangling

Apply the best solution to more complex data

Learn about stamina and wisdom in QML development

Key takeaways:

Plan model development, tests and experiments
Bad data encoding spoils the bunch!

Strong entanglement improves the data fit

More width and depth = the curse of dimensionality
Carefully consider your quantum model initialisation
Surprise - a single qubit model still works! (and well)
More training does not solve the problems

Data reuploading makes a huge difference!



Re C O m m e n d e d read i n g PennyLane: Automatic differentiation of hybrid quantum-

classical computations
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e paradigms. PennyLanes core feature is the ability to compute gradients of variational

compatible with dassical techniques such as backpropagation. PennyLane thus extends
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Modern applications of machine learning in quantum sciences .
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pptimized by a dassical  platforms, treating all simulators and devices on the same
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PennyLane is an open-source Python 3 framework that fa-
ational circuits opens up  cilitates the optimization of quantum and hybrid quantum:
ues for near-term quan.  dlassical algorithms. It extends several seminal ma

@ Springer

* Anna.Dawid@fuw.edu_pl, Alexandre. Dauphin@icfo.eu
June 23,2022

Hands-on Approach to Modern Quantum Algorithms Abstract
In these Lecture Notes, we provide a comprehensive introduction to the most recent ad-
vanees in the application of machine learning methods in quantum sciences. We cover
the use of deep learning and kernel i snperviszd ised, and reinforce-
ment learning algori i cati ion of many-body quantum
) states, quantum feedback control, and quantum circuits optimization. Moreover, we in-

ELIAS F. COMBARRO troduce and discuss more specialized topics such as di i ing, gener-

i ative models, statistical approach to machine leaming, and quantum machine learning.

SAMUEL GONZALEZ-CASTILLO

d by Alberto Di Megiio, 1
ad of Innovation - Coordinator CERN Quantum Technology Initative




Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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