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This session:

Observer's gaze shifts,
Collapsing time's vast ocean—
A single ripple.

TQM Haiku by DeepSeek

measurement

Pauli
rotations

Why Temporal Quantum Models (TQM)
are so damn hard to train !?!
Mainly practical issues with some theoretical overtones
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The problem of time
Tempus rerum imperator

Quantum Computing (QC), similarly to 
Quantum Mechanics (QM), takes a “pragmatic” 
approach to time, which is considered an external 
variable presiding over changes in observable 
phenomena. Our clocks are ticking in a flat Universe 
measured in classical intervals of our watches.

QC models can therefore be developed to analyse 
time and change of the world phenomena.

Temporal quantum models (TQM) are QC models 
able to deal with time and change, represented in 
data, but encoded into the model structure, e.g.

● by using time as a parameter to guide the 
function fitting of time-ordered data (left) 

● by casting a problem into a timeless form 
describing changes as relations in data 
representing the past and the future (right).

t
function fitting

t n..t n+1

sliding window
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Apps, devs and issues
QML to the rescue

Sample TQM applications

Apps are found in Sci & Eng, Earth Sci, Finance, Meds, etc.
● Explanation (sequence to function)
● Decision support (sequence to logical)
● Forecasting and anomaly detection (sequence to points)
● Monte Carlo + Random walks (constraints to sequence)
● Noise and anomaly elimination (sequence to sequence)

Dev issues with temporal quantum modelling
In the majority of applications, temporal quantum models and 
their circuits potentially suffer from a number of problems, e.g.

● Temporal data has unique characteristics, e.g. tacit features,
volume, continuity, cyclicity, noise, anomalies, volatility, etc.

● High complexity of non-trivial cases (features / anomalies)
● Large quantum models / circuits
● Low learning capacity 
● High training difficulties
● High error rates on NISQ machines
● Competition from classical approaches
● Competition from quantum-inspired approaches

QML algorithms that deal with time and change

Time in data
● Quantum Sequence Models (QRNN, QLSTM, QGRU)
● Quantum Reservoir Computing (QRC)
● Quantum Self-Attention and Transformers (LLMs)
● Quantum Fourier Analysis (QFT, PQFT, QFFT)

Change and state evolution
● Quantum Optimisation Algorithms (QAOA, QUBO)
● Quantum Annealing / Quantum Adiabatic Algorithm (QAA)
● Quantum Reinforcement Learning (QRL)
● Quantum Bayesian Modelling (QBN, QBC, QBNN)
● Quantum Genetic Algorithms (QGA)

Supporting models
● Quantum Neural Networks (QNN, VQC/R, QCNN, qGAN)
● Quantum Support Vector Machines (QSVM, QSVC/R)
● Quantum Kernel Methods (Feature Maps, Estimators)
● Quantum Clustering Algorithms (QCA k-NN, DQC)

Olivier Ezratty, Understanding Quantum Technologies, 7th Ed (2024)

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.
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Commonly used
measurements and interpretation

There are many ways of obtaining the outcome of a 
circuit execution, e.g. we can measure:

● all qubits (global cost / measurement)
● a few selected qubits (local cost / measurement)
● groups of qubits (each as a variable value)
● as counts of outcomes (repeated measurements)
● as probabilities of outcomes (e.g. P(|0111⟩))
● as Pauli expectation values (i.e. of eigenvalues)
● as expectation of interpreted values (e.g. 0 to 15)
● as variance, etc.

or

or

Repeated circuit measurement can be interpreted as 
outcomes of different types, e.g. 

● as a probability distribution (as is)
● as a series of values (via expvals)
● as a binary outcome:

single qubit measurement or parity of kets 
● as an integer:

most probable ket in multi-qubit measurement 
● as a continuous variable:

probability of the selected ket (e.g. |0n⟩)

integer logical

float

variable a

variable b

global cost local cost

Or we can measure 
expectation values
of the circuit state
and interpret them as 
a series of values

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

 So we can represent 
and  measure almost 

anything!
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VQA Model Execution

Training temporal quantum models 
Their baits and traps 

● TQMs are trained using Variational Quantum Algorithms (VQA).
● TQMs hence utilise quantum model execution and classical 

parameters optimisation using a classical loss/cost function.
● TQMs are designed to evolve a problem state into a solution 

state that can be sampled with measurements.

Model training by presenting pairs of input and output examples

Optimisationof modelparameters

State
Preparation

Classical Data →
Quantum State

State
Measurement

Quantum State →
Classical Data

State
Evolution

Encoded Data → 
Problem in Large

Hilbert Space

State
Evolution

Large
Problem Space → 

Large
Solution Space

State
Evolution

Large
Solution Space →

Focused
Solution Space

Optimiser
+ loss fun

Data

HugeparamsspaceMediumparamsspace Mediumparamsspace SmalldatasizeSmalldatasize

QNN

VQA

Potential gateway toquantum advantage

● TQMs are often designed as circuits of many qubits, layers 
and trainable parameters, able to process complex data, but 
consequently creating training difficulties, e.g.

– High-dimensional parameter space (large circuits)
🗹 enables linear separation of quantum information, but 
🗷 flattens the gradient space.

– Highly entangled circuits (complex circuits)
🗹 inter-relate qubits and their training parameters, but
🗷 suffer from non-local gradients, complex state dynamics, 
cost landscape complexity, and high decoherence rate.

– Global cost (measuring all qubits)
🗹 allows better utilisation of model training parameters, but
🗷 requires exponential increase of the circuit runs, needed 
to prevent sparse distribution of outcomes.

– Model initialisation (optimisation starting point) 
🗹 quick, easy and popular random params initialisation, but 
🗷 proven to make model optimisation ineffective.

– All of the above are said to attract barren plateaus!

 So what are those scary
barren plateaus?



 7 / 10

The curse of 
dimensionality

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on the 
quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

Sparse measurement outcomes (too many measurements)
● When increasing the number of measurements, 

we also exponentially increase the number of outcomes, so...
we need to increase the number of circuit runs exponentially! 

● Unless the number of runs is increased with measurements, 
distribution of outcomes becomes sparse and the probability 
calculations become imprecise (see fig. below). 

45-D space4-D space

optimum
optimum

initial point initial point

Note how distribution of 
pairwise distances between 

points within an n-ball 
concentrates around

the mean as the
dimension increases

cost landscape
surface

Barren Plateaus (too many parameters)
● Pairwise distances between uniformly distributed points in high-

dimensional space become (almost) identical, and the surface 
of such a space is almost flat.

● In a quantum model with a high-D parameter space, the cost 
landscape is also flat, the situation called barren plateau (BP).

● When BPs emerge, the optimiser struggles finding optimum.
● Selecting the optimisation initial point far from the optimum 

(e.g. random) makes it even more difficult!
Note how

volume (grey) in 
n-ball shrinks

(max n=5)

Note the sparse distribution 
of measurement outcomes. 
As counts are very low, the 
calculated probabilities 
become very imprecise!

volume
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Rethinking temporal quantum models
Reduce, Remove, Refine, Rescale, Redesign, Recreate

● Large TQMs suffer from many ailments, but
frugal model design is often a remedy:

– reduce number of qubits / layers / parameters
– remove unnecessary entanglements
– remove measurements or group them
– refine parameters initialisation (non-random)
– use gradient-free optimisers 

(e.g. particle swarm / evolutionary / Bayesian)
– rescale gradients, adopt quantum-aware optimisation

(e.g. with Quantum Natural Gradients)

+ Redesign your model by:
– using BP-resistant models (e.g. QCNNs)
– using BP-resistant model design (e.g. layerwise)
– applying regularisation to loss function
– applying gradient clipping
– using mid-circuit measurements
– using hybrid models (e.g. Hybrid Reservoir Model)

Example of alternative TQM design
● Reservoir computing is well suited time series analysis
● Hybrid quantum reservoir models consist of two parts:

– a quantum reservoir
– a classical model

● Quantum reservoir parameters are sparse and randomly 
assigned – no need for training

● The aim of the quantum reservoir is for the model to gain in 
dimensionality, in order to increase linear separability
(similarly to kernel methods)

● The classical model  (e.g. ridge regression) 
is simple and easy to train

● Overall, the hybrid reservoir model is 
highly efficient in training + showing high accuracy

Quantum Reservoir

Model training by presenting pairs of input and output examples

Optimisationof modelparameters

State
Preparation

Classical Data →
Quantum State

State
Measurement

Quantum State →
Classical Data

State
Evolution

Encoded Data → 
Problem in Large

Hilbert Space

Simple ML Model
(such as Ridge Regression)

Large Solution Space →
Solution

Classical Model

Optimiser
+ loss fun

DataLargedatasizeNotrainableparams
Smallparamsspace SmalldatasizeSmalldatasize

Hybrid Reservoir Model

VQA

+ If all fails, go analog or classical, consider:
– Analog Rydberg atoms (e.g. Pasqal)
– Quantum annealing (e.g. D-Wave)
– Adiabatic quantum computing (AQC) with Trotterization
– Efficient classical ML approach (e.g. FFT)
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Summary, Current Work and Questions?

Enquanted is being somewhere in-between Enchanted and Entangled

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

Dynamic Quantum Graphs

Entangled moments,
Time loops in quantum fabric—

Reality bends.
TQM Haiku by DeepSeek

Development of concepts and formalisms related to “quantisation” of 
classical data structures, such as time series, signals and graphs.

Dynamic quantum graphs for instance will assist highly efficient 
representation and processing of large, dynamic and highly interconnected 
structures, e.g. when assisting management of social networks, identification 
of emerging communities and detection of temporal anomalies in graphs.
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Quantum state evolution 
What’s happening in a well-oiled quantum model?

quantum state shifts
to Hilbert space of

”effective” problem parts
and relationships

State
Preparation

Classical Data →
Quantum State

State
Measurement

Quantum State →
Classical Data

space of problem states 
being mapped into
 space of candidate 

solution states

quantum state
accurately represents 

classical data

quantum state being
reduced by less likely 
solutions cancelling

each other

Intended Quantum State Evolution
(data → problem → solutions → outcomes)

Data → 
problem Hilbert space

Problem state space → 
large solution space

Large solution space →
focused solution space

A temporal quantum model can be 
represented as a quantum circuit, or a 

hybrid quantum-classical system consisting 
of quantum circuits and classical 

computational components, such as ML 
models, loss functions and optimisers.

There are no clear boundaries in the quantum state 
evolution, which similarly to deep learning, takes through

the layers of abstractions: from data encoding, problem 
representation, identification of candidate solutions,

highly likely solutions, to measured outcomes.

Quantum advantage 
happens here

  

Quantum difficulties
also happen here

Measurement and interpretation 
of the final quantum state is a 
complex task, which can often 
be hampered by the quantum 
technology itself.


	Slide 1
	Dashboard
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

