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Secrets revealed in this session:

To explore and explain Qiskit 
facilities to support Quantum 
Machine Learning in 50 mins
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Qiskit and QML

Why Qiskit? It features…
● Support for Python, Rust, C++ and more...
● Standard set of quantum state operations
● Execution on simulators and quantum hardware
● Execution on hardware accelerators (e.g. GPUs)
● Tools for error mitigation
● Variety of quantum gradients models
● Support for hybrid quantum-classical computation
● Large community ecosystem (libraries)
● Extensions with PyTorch and TensorFlow
● Hardware agnostic via vendor backends

including IBM quantum backends and runtime
● Best performer
● High complexity
● Core design changes very often!

Why Qiskit Machine Learning? Models and tools...
● Quantum Neural Networks (QNN, VQC/R, QCNN, qGAN)
● Quantum Kernel Methods (Feature Maps, Estimators)
● Quantum Support Vector Machines (QSVM, QSVC/R)
● Quantum Bayesian Modelling (Qbayesian)
● Quantum Kernel Principal Components Analysis (QKPCA)
● Quantum Clustering Algorithms (QCA k-NN, DQC)
● Quantum Optimisation Algorithms (QAOA, QUBO)
● Many others available from GitHub and publications...

Sahin, M.E., Altamura, et al., 2025. Qiskit Machine Learning: an open-source library for quantum 
machine learning tasks at scale on quantum hardware and classical simulators. ArXiv.2505.17756.

Olivier Ezratty, Understanding Quantum Technologies (2025)
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Parameterised Quantum Circuits
and Variational Quantum Algorithms

Classical input data is encoded (embedded) into the feature 
map’s parameters, setting the model’s initial quantum state.

The quantum state is altered by an ansatz, of parameterised 
quantum gates, which are trained by a classic optimiser

The circuit final state is measured and decoded (interpreted) 
as the model’s output in the form of classical data. 

Variational quantum circuits are not executable!
They must first be instantiated, i.e. all of their

input and weight parameters must be assigned values!

We can create a “variational” model = 
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each 
allowing rotation of a qubit state in 
x, y or z axis (as per Bloch sphere).

Typically (but now always), such 
circuits consist of three blocks: 

● a feature map (input)
● an ansatz (processing)
● measurements (output)

measurement

Pauli
rotations

Feature Map
State

MeasurementProcessing
Quantum registers

initialised to |0>

Classical registers
with outputs measured as 0 or 1 

Cost
Fun

cost is minimised
during circuit training

Input Parameters

Weight Parameters (Trainable)

Training
Data Set

Classical 
optimiser

decoded measurements 
are matched against 

training data

Feature Map Ansatz

ZZ feature map
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Data encoding strategies
Feature maps

There are many methods of data embedding, such as: 
the basis, angle, amplitude, QRAM, ...  encoding, 

In this session we will rely on angle encoding realised as 
qubit state rotation by the angles defined by the data.

The rotation operators are always available in a quantum 
platform API, e.g. Rx, Ry, Rz, P or U (zyz).

Typically, the encoding rotation is performed around x or y 
axis, or both (allowing two values per qubit).

Rotations are relative to a specific qubit state, commonly 
starting at |0⟩ state, or (|0⟩+|1⟩)/sqrt(2), which require 
qubits to be initialised in these states.

The encoded value could be represented either by the 
angular rotation, or the amplitude of the qubit projective 
measurement (Z).

Input data can also be repeatedly encoded and spread 
around the circuit, which is called data reuploading, and 
which is known to improve the model performance.

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

cos(x)

x

z

|1⟩

|0⟩

[-pi..0) [0..+pi]

Ry(+α)

Ry(+β)
y

[0]

+a

-b

Input
Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
Ry angles used: [1.047, 0.723, 2.094]
  

Measurements
Probabilities:  [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]
Amplitudes:     [0.5, 0.75, -0.5]

Rotation relative to 
|0⟩ initialisation

Rotations were relative to 
the evolving state, here |0⟩

Note that training will place qubit 
states in areas x < 0 and arbitrarily 
around the z axis. Measurements 
of such states cannot distinguish 
them from “pure” x > 0 and z = 0.

???
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[0..+pi][-pi..0)

???

Encoding nightmares
The Good, the Bad and the Ugly

x

z

|1⟩

|0⟩

y

[0]

Two principles of quantum 
data encoding:

1) distinct data values should 
always map onto distinct 
angles (and possibly also 
amplitudes)

2) the same data values 
should always map into 
identical angles (and 
possibly also amplitudes)

This example shows encoding values 
wrapping around the Bloch sphere 
(possibly several times).

This could result in different values to be 
mapped into the same amplitude 
(orange), which can be corrected by 
trainable rotational operations (Ry).

This could also result in different values 
to be mapped into the same angles 
(red), which cannot be corrected.

Encoding sine function data in an interval 
[-2pi, 2pi] will deceptively result in a 
“good” model (due to data symmetry).

However, even a slight change to the 
function generating data will make the 
model impossible to converge.

Potential 
measurement 
conflict! ! !

(-2pi..-pi)

Encoding
conflict
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Ansatz design and training
A sample curve fitting model ...

feature maps vary in: 
structure and function

ansatze vary in:
● width (qubits #)
● depth (layers #)
● dimensions (param #)
● structure (e.g. funnelling)
● entangling (circular, linear, sca)

ansatz layers consist of: 
rotation blocks and entangling blocks
of U(z, y, z) and CNOT gates

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy, 
hinge-embedding, Kullback-Leibner divergence

different optimisers:
gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit execution on:
simulators (CPUs), accelerators (GPUs) and

real quantum machines (QPUs)

measurement

Pauli
rotations

rotation gates 
alter qubit states 
around x, y, z 
axes

(entanglement)(rotations)

Beware that 
adding qubits adds

parameters and entanglements!

The number of states represented by the 
circuit grows exponentially with the 

number of qubits!

To execute a circuit we just apply it to input data 
and the optimum parameters

Encoding of classical data in a quantum circuit is 
not what our ML experience tells us about inputs !

Data can be reuploaded across circuit’s width and depth

S1 S2Wb1 Wb2 Wa1

U(z,y,z)
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Commonly used
measurements and their decoding

Quantum circuits can be measured in many ways, e.g.
● all qubits (global cost / measurement)
● a few selected qubits (local cost / measurement)
● groups of qubits (each as a variable value)

And received in many different formats, e.g.
● as counts of outcomes (repeated measurements)
● as probabilities of outcomes (e.g. P(|0111 ))⟩
● as Pauli expectation values (i.e. of eigenvalues)
● as interpretation of expectation values (e.g. 0..15), etc.

Repeated measurements can be decoded, i.e. interpreted as 
outcomes of different types, e.g. 

● as a probability distribution (as is)
● as a series of values (via expvals)
● as a binary outcome:

single qubit measurement or parity of kets 
● as an integer:

most probable ket in multi-qubit measurement 
● as a continuous variable:

expectation value or the probability of a ket (e.g. |0n )⟩

Note that as expected measurement destroys the qubit state, 
it also loses phase info that is vital for some apps (e.g. QAE)

or

or

integer logical

float

variable a

variable b

global cost local cost

Or we can measure 
expectation values
of the qubits states
and interpret them as 
a series of values in 
the range [-1..+1]

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

Beware that 
adding 1 measurement → 

doubles the number of outcomes!

So... having n
measurements leads to

2n outcomes

samplingsampling

estimation
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Measurement nightmares
The Good, the Bad and the Ugly

Olivia lanes (2024): “Run Large-Scale Quantum Circuits (100+ Qubits Explained)”,
Quantum Computing in Practice, 
https://www.youtube.com/playlist?list=PLOFEBzvs-VvoZxe2ClFy27yOt6VzsTEJK.

Chris Wood (2024): “An Introduction to Qiskit Runtime Primitives Version 2”,
Qiskit Summer School 2024, https://www.youtube.com/watch?v=OuYz02clnx4&t=5s.

Sparse measurement outcomes 
(too many measurements, esp. as probability distribution)

● When increasing the number of measurements, 
we also exponentially increase the number of 
outcomes, leading to the exponential increase 
in the number of circuit runs! 

● Unless the number of runs is increased with 
measurements, distribution of outcomes becomes 
sparse and the probability calculations become 
imprecise (fig. left). 

Note the sparse distribution 
of measurement outcomes. 
As counts are very low, the 
calculated probabilities 
become very imprecise!

Working with large circuits (qubits# > 100) 
● Instead of working with probability distributions (scales with O(2q)) we 

need to switch to expectation values (converges with O(1/ϵ2))
● When developing an estimator, it is possible to group observables to 

reduce the number of measurement outcomes
● It is also possible to evaluate a complex Hamiltonian (linear combination 

of expvals), which can group observables into meaningful outcomes
● Instead of specifying the number of runtime shots (still possible), 

we instead specify the precision of measurement outcomes

Dealing with errors (large circuits)
● When working with large circuits, 

it is also necessary to deploy error 
suppression and mitigation

● Qiskit allows some of those techniques 
to be applied automatically at runtime 
and for specific observables, e.g. 
dynamical decoupling, twirling (TREX) 
and ZNE / PEC (Zero Noise Extrapolation / 
Probabilistic Error Cancellation)

+ larger circuit =
more quantum errors

https://www.youtube.com/playlist?list=PLOFEBzvs-VvoZxe2ClFy27yOt6VzsTEJK
https://www.youtube.com/watch?v=OuYz02clnx4&t=5s
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Parameter space 
(dim = the number of params)
is a classical multi-dim 
space of trainable gate 
parameters, which the 
optimiser navigates

θ2 θ1

Cost /
Fidelity

Local
Minimum

Cost 
Landscape

Optimisation
Path

Parameter 
Space

Hilbert 
Space

Inaccuracy

Real
Solution
(State)

Global
Minimum

Hamiltonian
Problem 

Representation

Optimisers can only
see gradients shaping 

the parameter space

Parameterised 
Quantum Circuit

Nonlocal interactions
(due to entanglements)

Mapping from quantum 
space to parameters 

space loses information!

Evolving model states,
as influenced by unitary

ops and their params

Entanglements twist 
and deform the 
parameter space
creating non-local
interactions

Model and its 
evolving state

Model and
its cost

Results and 
gradients are 

calculated here

Results and 
gradients are 

used here

Circuit execution 
takes place here

Gradients

Uncertainty
& Noise

Hilbert state space 
(dim ≈ 2 the number of qubits) 
is the quantum realm 
where the models and 
their states evolve in 
response to unitary 
operations as defined 
by the circuit gates

Entanglements 
(defined by CNOTs) 
create and correlate non-
separable qubit states, 
which alter the parameter 
space geometry, and also 
the cost landscape used 
by the optimiser

Measurement 
of individual qubits 
collapses their states, 
consequently projecting 
the circuit state onto 
classical outcomes, 
in the process we lose 
some quantum info 
(e.g. phase)

Data encoding 
brings in classical data 
into the Hilbert space as 
unique and correlated 
quantum states during 
the model execution

Circuit layers
determine the evolution 
of the quantum model's 
initial state into its final 
state during the circuit 
execution
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Example model
Expressivity vs Trainability

S1 S2Wb1 Wb2 Wa1

Parameter space 
(dim = the number of params)

is a classical multi-dim space of trainable gate 
parameters, which the optimiser navigates – 

that is the only available info to the optimiser!

Entanglements 
(defined by CNOTs) create and correlate 
non-separable qubit states, which alter the 
parameter space geometry, and also the 
cost landscape used by the optimiser,
entanglements cause non-local interactions

Measurement 
of individual qubits collapses their 
states, consequently projecting the 
circuit state onto classical outcomes,
in the process we lose some 
quantum info (e.g. phase)

Hilbert state space 
(dim ≈ 2 the number of qubits) 

is the quantum realm where the models and their 
states evolve in response to unitary operations 

as defined by the circuit gates -
this is where the quantum activity takes place!

Data encoding 
brings in classical data 

into the Hilbert space as 
unique and correlated 

quantum states during the 
model execution

Circuit layers
determine the evolution 
of the quantum model's 
initial state into its final 
state during the circuit 
execution
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The curseThe curse
of dimensionality

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on 
the quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

45-D space4-D space

optimum
optimum

initial point initial point

Note how distribution of 
pairwise distances between 

points within an n-ball 
concentrates around

the mean as the
dimension increases

cost landscape
surface Barren Plateaus (too many dimensions)

● Pairwise distances between uniformly distributed points in high-
dimensional space become (almost) identical, and the surface of 
such a space is almost flat (n-ball value is near its surface).

● In a quantum model with a high-D parameter space, the cost 
landscape is nearly flat, the situation called barren plateau (BP).

● In high-D parameter space, models sampled by the optimiser 
are very sparse in both Hilbert space and parameter space.

● When BPs emerge, the optimiser struggles finding the optimum.
● Selecting the optimisation initial point far from the optimum 

(e.g. random) makes it even more difficult !

There are some well-known BP countermeasures
● use fewer qubits / layers / parameters
● use local cost functions (do not measure all qubits)
● use non-Euclidean metrics (e.g. Fisher Information Metric)
● beware of random params initialisation (and keep them small)
● use BP-resistant model design (e.g. layer-by-layer dev)
● use BP-resistant models (e.g. QCNNs)

Note how
volume (grey) in 

n-ball shrinks to 0
(max n=5)

volume
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Training a simple
TS Qiskit estimator

fit
training

loop

initial weights

PQC

observablesinput params

weight params gradients

Estimator

Regressor

Optimiser

PQC Creator

meta-params

architecture

loss function Callback

Estimator creates the physical circuit 
using the observables, input parameters 
and weight parameters, and the gradient 
method used in the calculation of 
expectation values. It then executes the 
circuit by relying on a hardware specific 
estimator primitive. It returns the 
calculated expectation values.

Regressor starts with the model’s
 initial weights. It then passes the 

current parameter values (inputs and 
weights) to the Estimator and receives 
back the observed expectation values 

and their gradients, which can be used 
by an optimiser to define the overall 

cost landscape and determine the next 
step in the circuit weights optimisation. 

estimator
primitive

training log

Qiskit Optimiser provides function 
fit which executes a training loop, 
performing: a forward pass which 
applies the model with its current 
parameters to training data, loss 
function, and a backward pass 
to improve the model parameters.

data

Dataset is to be prepared, cleaned and 
partitioned for training and testing.

Parameter 
Space

Hilbert 
Space

Via the Optimiser 
Regressor invokes a 

callback function to log 
the current weights

and cost.

broadcasting layouts

transpilation
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Task: improve a forecasting model for two datasets

model under-trained
“poor” fit

smaller weights and more 
training epochs,

still under-trained, but...

after C

more layers,
different observables and 

different optimiser

Change: new dataset using the 
standard and custom QNN model

started with standard model, more 
epochs - more improvement, 

different model - best fit

A

C

D
A

H

after H

Two Sins data Mackie-Glass data

...

B

“better” fit

“best” fit “great” fit but can be further improved

B

after B

Often incremental changes result only in 
small improvements, we may need a drastic 
change: a model, optimiser or observables



 15 / 19

Quantum model performance:
Scoring a quantum model

● Model training involves an optimizer, training data and a loss function, e.g. L2Loss (MSE).
● However, several metrics may be needed to assess the model performance, 

e.g. MSE, MAE or R2, to be calculated for training, validation and test data partitions.
● At each optimisation step, the model parameters should be saved for model scoring 

on all data partitions (e.g. figure bottom-left).
● However, quantum models are highly sensitive to their parameters initialisation, 

therefore performance of a single model run is not reliable!
● So, we should run multiple, differently initialised, instances of the same model and 

analyse a distribution of their performance results.
● Here we present several (5) instances of the same model identically configured but 

differently initialised (figure bottom-middle).
● Set the model performance expectations by indicating the model’s fit to data, 

depending on it best, median and worst instance performance (figures right).

Mean Square Error (MSE)
for a single model
and both training

and test data

Mean Absolute Error (MAE)
for 5 model instances

on both training
and test data

Best
model’s fit

(in test)

Median
model’s fit

(in test)

Worst
model’s fit

(in test)
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Recommended reading
on QML with Qiskit

Qiskit 2.2.3 is a 
patch release with 

bug fixes
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Summary and thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Images from Unsplash and Wikipedia

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

Available resources, see:
ironfrown (Jacob L. Cybulski, Enquanted)
https://github.com/ironfrown/qml_bcd_lab

● QML is an intersection of QC x ML x Maths
● Qiskit provides an excellent platform for QML
● Qiskit QML models are based in PQCs
● The most common approach to QML are VQAs
● Quantum encoding is the key to success (but full of traps)
● Qiskit provides tools and templates for ansatz design
● Measurement of circuits requires interpretation of results
● Quantum circuit design needs to consider its state evolution in Hilbert space and 

its parameter optimisation in classical parameter space, both have conflicting 
requirements

● Dimensionality of Hilbert space and parameter space promotes expressivity of 
the circuit, however, it hampers the model trainability

● Qiskit provides powerful runtime framework for training classification (sampling) 
and estimation models, equipped with noise suppression and mitigation tools

● Quantum models are highly sensitive to initialisation, so their performance needs 
to be assessed across different model instances

● QML is still a research discipline
● Adapting ML methods to QML has not shown an advantage
● The advantage of QML over ML can only be found in Hilbert space

https://github.com/ironfrown/qml_bcd_lab
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Example: 
quantum time series analysis

● TS values are dependent on the preceding values!
● Distinction between consecutive TS values is small!
● There are several different types of TS models, e.g.

● The first group are curve-fitting models, which are 
trained to fit a function to a sample of data points, to 
predict data values at specific points in time

● The second group are forecasting models, which are 
trained to predict future data points from their preceding 
temporal context (a fixed-size window sliding over TS) 

● Majority of statistical forecasting methods require 
strict data preparation, such as dimensionality 
reduction, TS aggregation, imputation of missing 
values, removal of noise and outliers, adherence to 
normality and homoskedasticity, they need to be 
stationary

● QML methods do not have such strict requirements, 
and are promising for effective time series analysis 
and forecasting!

Sales of beer in USA Mean 
is not constant

Variance
is not constant

Trend
is non-linear 

Visibly not stationary

● Time series (TS) analysis aims to identify patterns in 
historical time data and to create forecasts of what data 
is likely to be collected in the future

● Many TS applications, including heart monitoring, 
weather forecasts, machine condition monitoring, etc.

● Time series can be univariate or multivariate
● Time series often show seasonality in data, 

i.e. some patterns repeating over time

Quantum time series analysis is hard!
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S1 (single encoding layer)

W1 (trainable layer) W2 (trainable layer)

xqnn_standard_model

This QNN model consists of two 
components, i.e. (1) the ZZ feature 
map, and (2) a TwoLocal ansatz. 

This QNN architecture is commonly 
used and considered to enhance 
expressivity of the quantum circuit.

xqnn_custom_model

This is a custom-built QNN model. It is composed of (1) an angle encoding 
feature map of Ry rotation gates; and (2) an ansatz that is wider than the 
encoding layers and consisting of several trainable layers of Rx, Ry and Rz 
parameterised blocks interspersed with entangling blocks of CNOT gates 
arranged in a circular fashion.

Custom models are often used when facing training difficulties, e.g. to 
improve the circuit trainability by reducing the its entanglement (fewer CNOT 
gates) or to add trainable parameters to enhance its expressivity.

W1 W2 W3S

TwoLocal anzatz

ZZ feature map

In this workshop we provide two alternative QNN models. The first features the commonly 
used circuit structure relying on Qiskit supplied parameterised circuits. The second is 
custom made and is created from the Qiskit basic building blocks (gates and parameters).
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