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*  Execution on hardware accelerators (e.g. GPUS)
¢ Tools for error mitigation
*  Variety of quantum gradients models

Why Qiskit Machine Learning? Models and tools...

_ _ _ * Quantum Neural Networks (QNN, VQC/R, QCNN, gGAN)
* Support for hybrid quantum-classical computation . Quantum Kernel Methods (Feature Maps, Estimators)

* Large community ecosystem (libraries) » Quantum Support Vector Machines (QSVM, QSVC/R)

«  Extensions with PyTorch and TensorFlow * Quantum Bayesian Modelling (Qbayesian)

Hardware agnostic via vendor backends * Quantum Kernel Principal Components Analysis (QKPCA)
including 1BM guantum backends and runtime * Quantum Clustering Algorithms (QCA k-NN, DQC)

«  Best performer * Quantum Optimisation Algorithms (QAOA, QUBO)

- High complexity * Many others available from GitHub and publications...

° Core design changes very often! Sahin, M.E., Altamura, et al., 2025. Qiskit Machine Learning: an open-source library for quantum
machine learning tasks at scale on quantum hardware and classical simulators. ArXiv.2505.17756.

Olivier Ezratty, Understanding Quantum Technologies (2025)



Quantum registers

initialised to |0> \ Feature Map

Parameterised Quantum Circuits
and Variational Quantum Algorithms

Variational quantum circuits are not executable!
They must first be instantiated, i.e. all of their
input and weight parameters must be assigned values!
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Classical registers /
with outputs measured as 0 or 1

We can create a “variational” model =
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each
allowing rotation of a qubit state in
X,y or z axis (as per Bloch sphere).

Typically (but now always), such [ _.-----="

Pauli
rotations

A

Classical
optimiser

decoded measurements
are matched against
training data

cost is minimised
during circuit training

Classical input data is encoded (embedded) into the feature
map’s parameters, setting the model’s initial quantum state.

circuits consist of three blocks:

—— -

* afeature map (input)
* an ansatz (processing)
° measurements (output)

The quantum state is altered by an ansatz, of parameterised
guantum gates, which are trained by a classic optimiser

The circuit final state is measured and decoded (interpreted)
as the model’s output in the form of classical data.



Data encoding strategies

Feature maps

There are many methods of data embedding, such as:
the basis, angle, amplitude, QRAM, ... encoding,

In this session we will rely on angle encoding realised as
qubit state rotation by the angles defined by the data.

The rotation operators are always available in a quantum
platform API, e.g. Rx, Ry, Rz, P or U (zyz).

Typically, the encoding rotation is performed around x or y
axis, or both (allowing two values per qubit).

Rotations are relative to a specific qubit state, commonly
starting at |0) state, or (|0)+|1))/sqrt(2), which require
qubits to be initialised in these states.

The encoded value could be represented either by the
angular rotation, or the amplitude of the qubit projective
measurement (2).

Input data can also be repeatedly encoded and spread
around the circuit, which is called data reuploading, and
which is known to improve the model performance.

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

cos(x)

Note that training will place qubit
states in areas x < 0 and arbitrarily
around the z axis. Measurements
of such states cannot distinguish
them from “pure” x >0 and z = 0.

Rotation relative to
|0) initialisation

Measurement of individual qubit amplitudes
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Rotations were relative to
the evolving state, here |0)
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Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
Ry angles used: [1.047,0.723, 2.094]

Measurements

Probabilities: [[0.25, 0.75], [O.

Amplitudes: [0.5,0.75, -0.5]

562, 0.438], [0.25, 0.75]]



Encoding sine function data in an interval
[-2pi, 2pi] will deceptively result in a

E n co d i n g n i g htm ares “good” model (due to data symmetry).

Original vs Prediction

The Good, the Bad and the Ugly — oo

Prediction
0.75 4

0.50 4

0.25 1

Two principles of quantum z A
data encoding: |0)

0.00 4

Value

—0.25 A

—0.50 A

1) distinct data values should
always map onto distinct
angles (and possibly also

—0.75 4

—1.00 1

amplitudes)

6 Za -2 0 2 a 6
Range
However, even a slight change to the
function generating data will make the
model impossible to converge.

2) the same data values
should always map into

identical angles (and S
possibly also amplitudes) X Original vs Prediction
1.0+ —s— Original
Potential Prediction
i ) measurement
This example shows encoding values confiict 0.8 1
wrapping around the Bloch sphere
(possibly several times). - 0.6 1
(-2pi..-pi)

This could result in different values to be
mapped into the same amplitude
(orange), which can be corrected by
trainable rotational operations (Ry).

Value

0.4
Encoding
conflict

0.2 {

This could also result in different values
to be mapped into the same angles 00

(red), which cannot be corrected.



Ansatz design and training

A sample curve fitting model ...

Encoding of classical data in a quantum circuit is
not what our ML experience tells us about inputs !

Beware that
adding qubits adds
parameters and entanglements!

The number of states represented by the
circuit grows exponentially with the
number of qubits!
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feature maps vary in:
structure and function

ansatze vary in:

* width (qubits #)

* depth (layers #)

* dimensions (param #)
 structure (e.g. funnelling)

* entangling (circular, linear, sca)

ansatz layers consist of:
rotation blocks and entangling blocks
of U(z, y, z) and CNOT gates

Data can be reuploaded across circuit’s width and depth

rotation gates
alter qubit states
around x, Y, z
axes

measurement

Pauli
rotations

—————
-

-
e - -

To execute a circuit we just apply it to input data
and the optimum parameters

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy,
hinge-embedding, Kullback-Leibner divergence

different optimisers:

gradient based (Adam, NAdam and SPSA)
linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit execution on:
simulators (CPUSs), accelerators (GPUs) and
real quantum machines (QPUS)



Commonly used

measurements and their decoding

Quantum circuits can be measured in many ways, e.g.
« all qubits (global cost / measurement)
* afew selected qubits (local cost / measurement)
e groups of qubits (each as a variable value)

And received in many different formats, e.g.
* as counts of outcomes (repeated measurements)
* as probabilities of outcomes (e.g. P(|0111)))
* as Pauli expectation values (i.e. of eigenvalues)
* as interpretation of expectation values (e.g. 0..15), etc.

Repeated measurements can be decoded, i.e. interpreted as
outcomes of different types, e.g.
* as a probability distribution (as is)
* as a series of values (via expvals)
* as a binary outcome:
single qubit measurement or parity of kets
° asaninteger:
most probable ket in multi-qubit measurement
* as acontinuous variable:
expectation value or the probability of a ket (e.g. |0"))

Note that as expected measurement destroys the qubit state,
it also loses phase info that is vital for some apps (e.g. QAE)
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Or we can measure
expectation values

of the qubits states
and interpret them as
a series of values in
the range [-1..+1]

Beware that
adding 1 measurement =

doubles the number of outcomes!

So... having n
measurements leads to
2" outcomes

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.



Olivia lanes (2024): “Run Large-Scale Quantum Circuits (100+ Qubits Explained)”,
Quantum Computing in Practice,
https://www.youtube.com/playlist?list=PLOFEBzvs-VvoZxe2CIFy27yOt6VzsTEJK.

Measurement nightmares Cve Yoo 026y 0 it o Qs Rurte s Veson 2,
The Good, the Bad and the Ugly

Sparse measurement outcomes

2-Qubit Circuit (Non-Uniform) 5-Qubit Circut (Sparse) (too many measurements, esp. as probability distribution)
®s1 | Note the sparse distribution * When increasing the number of measurements,
ol | e e we also exponentially increase the number of
z, | | calculated probabilities outcomes, leading to the exponential increase
N : become very imprecise! in the number of circuit runs!

o
w
.

+ larger circuit =

more quantum errors * Unless the number of runs is increased with

measurements, distribution of outcomes becomes
sparse and the probability calculations become
imprecise (fig. left).
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Outcome

Outcome

Working with large circuits (qubits# > 100) Dealing with errors (large circuits)
* Instead of working with probability distributions (scales with O(2%)) we * When working with large circuits,
need to switch to expectation values (converges with O(1/€?)) it is also necessary to deploy error
« When developing an estimator, it is possible to group observables to suppression and mitigation
reduce the number of measurement outcomes * Qiskit allows some of those techniques

to be applied automatically at runtime
and for specific observables, e.g.
dynamical decoupling, twirling (TREX)

and ZNE / PEC (zZero Noise Extrapolation /
Probabilistic Error Cancellation)

e Itis also possible to evaluate a complex Hamiltonian (linear combination
of expvals), which can group observables into meaningful outcomes

* Instead of specifying the number of runtime shots (still possible),
we instead specify the precision of measurement outcomes


https://www.youtube.com/playlist?list=PLOFEBzvs-VvoZxe2ClFy27yOt6VzsTEJK
https://www.youtube.com/watch?v=OuYz02clnx4&t=5s
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Parameter space

(dim = the number of params)
is a classical multi-dim
space of trainable gate
parameters, which the
optimiser navigates

Entanglements

(defined by CNOTSs)
create and correlate non-
separable qubit states,
which alter the parameter
space geometry, and also
the cost landscape used
by the optimiser

Measurement

of individual qubits
collapses their states,
consequently projecting
the circuit state onto
classical outcomes,

in the process we lose
some quantum info
(e.g. phase)

: Gradients

Cost/ : Optimisers can only

Fidelity see gradients shaping

gFr{:c?iueI;stsagge : the parameter space

used here
Parameter Nonlocal interactions Optimisation
due to entanglements
Space ( 3 ) Path

Model and
its cost

Cost
Landscape

Entanglements twist
and deform the

|
I
I | |  parameter space
Mapping from quantum | I I 57’ gig’ggo’;';;”'/oca/
space to parameters | | I I
space loses information! | (I : :
| | ]
[ == ' ! .
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Space

Parameterised
Quantum Circuit

Circuit execution =~ r;H-;.;I.{t el
takes place here —— ° f;f;f‘?b?'—“aﬂ ~ Model and its
SOEN evolving state

Representation o S

Results and
gradients are
calculated here

Uncertainty .

& Noise '

= Evolving model states,

as influenced by unitary - 0.
ops and their params - -

-

Hilbert state space
(dim =2 the number ofqubits)

is the quantum realm
where the models and
their states evolve in
response to unitary
operations as defined
by the circuit gates

Data encoding

brings in classical data
into the Hilbert space as
unique and correlated
quantum states during
the model execution

Circuit layers
determine the evolution
of the quantum model's
initial state into its final
state during the circuit
execution



Example model

Expressivity vs Trainability

Data encoding

brings in classical data

Parameter space

(dim = the number of params)

is a classical multi-dim space of trainable gate
parameters, which the optimiser navigates —
that is the only available info to the optimiser!

into the Hilbert space as
unique and correlated
guantum states during the

model execution 7N

Entanglements

(defined by CNOTSs) create and correlate
non-separable qubit states, which alter the
parameter space geometry, and also the
cost landscape used by the optimiser,
entanglements cause non-local interactions

\
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Hllbert state Space Measurement

(dim =2 the number of qubits)

is the quantum realm where the models and their
states evolve in response to unitary operations
as defined by the circuit gates -

this is where the quantum activity takes place!

Circuit layers
determine the evolution
of the quantum model's
initial state into its final
state during the circuit
execution

of individual qubits collapses their
states, consequently projecting the
circuit state onto classical outcomes,
in the process we lose some
guantum info (e.g. phase)



The curse

of dimensionality

4-D space 45-D space
cost landscape

volume surface

> optimum

optimum

Note how
volume (grey) in
n-ball shrinks to 0
(max n=5)

initial point initial point

Smoothed Distribution of Pairwise Distances in N-Ball for Different D

Note how distribution of
pairwise distances between
points \within an n-ball
concentrates around
the mean as the
dimension increases

Probability Density

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on
the quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.
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Barren Plateaus (too many dimensions)

Pairwise distances between uniformly distributed points in high-
dimensional space become (almost) identical, and the surface of
such a space is almost flat (n-ball value is near its surface).

In a quantum model with a high-D parameter space, the cost
landscape is nearly flat, the situation called barren plateau (BP).
In high-D parameter space, models sampled by the optimiser
are very sparse in both Hilbert space and parameter space.
When BPs emerge, the optimiser struggles finding the optimum.
Selecting the optimisation initial point far from the optimum

(e.g. random) makes it even more difficult !

There are some well-known BP countermeasures

use fewer qubits / layers / parameters

use local cost functions (do not measure all qubits)

use non-Euclidean metrics (e.g. Fisher Information Metric)
beware of random params initialisation (and keep them small)
use BP-resistant model design (e.g. layer-by-layer dev)

use BP-resistant models (e.g. QCNNSs)



Dataset is to be prepared, cleaned and
partitioned for training and testing.

Training a simple

o . initial weights ——
TS QISkIt eStImator broadcasting layouts
input params observables i
Qiskit Optimiser provides function )
fit which executes a training loop, —
performing: a forward pass which weight params gradients
applies the model with its current Estimator creates the physical circuit
parameters to training data, /oss PQC transpilation using the observables, input parameters
function, and a backward pass e e and weight parameters, and the gradient
to improve the model parameters. = i method used in the calculation of
! expectation values. It then executes the
meta-params | _ Hilbert circuit by relying on a hardware specific
| fit Space estimator primitive. It returns the
o %’;’”g calculated expectation values.
—
estimator
architecture primitive

Model training started training |og

Regressor starts with the model’s Via the Optimiser

’”’t“a’ We’g’zts- It Ithe” e thg Regressor invokes a  (Gsa!s7) © Trers: 50 7 300, Cost: 0. 102683
current parameter values (inputs an callback function to log  (69:0:34) - Tiers: 100 / 500, cost: 0.125066

. H - er#: , Lost: .
weights) to the Estimator and receives the current weights (00:00:29) - Iter#: 206 / 560, Cost: 0.853152
back the observed expectation values and cost (00:00:36) - Iter#: 250 / 500, Cost: ,038513
d thei di hich b d Parameter : (09:00:43) - Iter#: 380 / 500, Cost: ©.033054
and their gradients, which can be use pl (00:00:50) - Iter#: 350 / 500, Cost: 8.029146
i ; (09:00:58) - Iter#: 480 / 560, Cost: ©.027865
by an optimiser to define the overall pace (00:01:05) - Iter#: 450 / 500, Cost: ©.026759

cost landscape and determine the next | loss function

step in the circuit weights optimisation.

Total time 00:01:12, min Cost=0.026013
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Data prepared for model training (*Two Sins") Model "qnn_standard_model” (g5, fm1, ans1): Best fit Data prepared for model training (“Mackie Glass")

* —— Taining —— Testing 10 ~-- Training —— Forecast, min MSE=0.041498@98 N —— Training —o— Testing
N afterC w
308 Sos
£ oa -
- [ ” H -
Two Sins data better” fit Mackie-Glass data
o0 3 1 o 1 3 3 2 a 1 3 ) 100 200 300 400 o 600
Range (Points=150, Windows: size=5, step=2, ining#: 49, testing#: 24) Range (Points=150, Windows raining#: 49, testing#: 24) Range (Points=150, Windows: size=5, step=1, horizon=1, training#: 97, testing#: 48)
Model performance (data="qnn_standard_model", g5, fm1, ans1) (sm.emt=0.80, iter# 50) Model performance (data="qnn_standard_model*, g5, fm1, ans5) (sm.emt=0.80, iter# 64) Model performance (data="qnn_custom_model", q7, in5, ans3) (sm.emt=0.80, iter# 300)
—— Training (min Cost=0.08499 @ iter# 48) —— Training (min Cost=0.00015 @ iter# 63) —— Training (min Cost=0.01133 @ iter# 296)
0.40 030
| . started with standard model, more
mode“ undeﬂr;t_ramed more layers, epochs - more improvement,
030 : - - -
. poor” fit . different observables and ) different model - best fit
2 2 . .. @
o o1 different optimiser ‘. .
0.10
A H - B
015
0.00
0 10 20 30 40 50 o 10 20 30 40 50 60 0 50 100 150 200 250 300
IRteration fteration Iteration
Model performance (data="qnn_standard_model", g5, fm1, ans1) (sm.emt=0.80, iter# 100) Model "qnn_standard_model" (g5, fm1, ans5): Best fit Model "gnn_custom_model” (q7, in5, ans3): Best fit
T T e oo g e after H Ty o miraceomrerian Ty Fev s nesigie
smaller weights and more .
training epochs,
- - ®oa £ o4
) still under-trained, but... ~
2015 02 v
“ ” £ 02 “ ” £ -
best” fit great” fit but can be further improved
II B S S— 5 5 ; = = - = =
\ Change: new dataset using the Often incremental changes result only in

Ieration

Task: improve a forecasting model for two datasets

standard and custom QNN model

small improvements, we may need a drastic
change: a model, optimiser or observables
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MSE

0.1

Quantum model performance:

Best "serial" PQFT model (q1, 19): Function fit (inst #3 @ epoch #55, min MSE=0.0131)

~O- Train data —O— Train fit (R2=0.7855, MAE=0.1128, MSE=0.0165)

1.0 Test data —O— Test fit (R2=0.5933, MAE=0.0980, MSE=0.0131) Best
- model’s fit
Scoring a quantum model _
(in test)
Model training involves an optimizer, training data and a loss function, e.g. L2Loss (MSE).
However, several metrics may be needed to assess the model performance,
e.g. MSE, MAE or R?, to be calculated for training, validation and test data patrtitions.
At each optimisation step, the model parameters should be saved for model scoring
on all data partitions (e.g. figure bottom-left).
Median "serial" PQFT model (q1, 19): Function fit (inst #2 @ epoch #53, min MSE=0.0185)
However, quantum models are highly sensitive to their parameters initialisation, 1015 vt o Tt (oo, WA iat, WEE001E Median
therefore performance of a single model run is not reliable! model’s fit
So, we should run multiple, differently initialised, instances of the same model and (in test)
analyse a distribution of their performance results.
Here we present several (5) instances of the same model identically configured but X W
differently initialised (figure bottom-middle).
Set the model performance expectations by indicating the model’s fit to data,
depending on it best, median and worst instance performance (figures right). 2
Model performance (data="sin_n100", g3, 14) (sm.emt=0.80, iter# 121) Model "serial" (q1, 19): Mean instance performance (sm.emt: 0.4) Worst "serial" PQFT model (q1, 19): Function fit (inst #1 @ epoch #13, min MSE=0.1102)
T oo e 59 e i e ' Worst
Mean Absolute Error (MAE) model’s fit
Mean Square Error (MSE) ' for 5 model instances e (in test)
for a single model el on both training 3 o
and both training 2o “ and test data £
and test data :
wl T etumte O Tt (Ve asss WE—0a700 et 1301

Iteration Iterations

Range (over 100 samples)
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Quantum computing with Qiskit
Ali Javadi-Abhari,' Matthew Treinish,' Kevin Krsulich,' Christopher J. Wood,! Jake Lishman,? Julien Gacon,*

mon Martiel,! Paul D. Nation,! Lev S. Bishop,' Andrew W. Cross," Blake R. Johnson,! and Jay M. Gambetta'
HIBM Quantum, IBM T.J. Walsor Research Center, Yorkioun Heights, NY, 10508

- - -
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We describe Qiskit.
ke design decisions that have shaped its development, and examine the software architecture and
its core components. We demonstrate an end-to-end workflow for solving a problem in condensed
matter physics on a quantum computer that serves to highlight some of Qiskit's capabilities, for
Quantum Science and Technology example the representation and optimization of circuits at various abstraction levels, its scalability

and retargetability to new gates, and the use of quantum-classical computations via dynamic circuits.
e discuss some of the ecosystem of tools and plugins that extend Qiskit for various tasks,
and the future ahead

software development kit for quantum information science. We discuss the

I INTRODUCTION I DESIGN PHILOSOPHY

Quantum computing is progressing at a rapid pace, We begin by discussing Qiskit’s scope within the
and robust software tools such as Qiskit are becoming in-  broader quantim computing software stack, as illus-
creasingly important as a means of facilitating research,  trated in Figure 1. Starting from a computational prob-
education, and to run computationally interesting prob- lem, a quantum algorithm specifies how the problem
amnle Qiskit was  may be solved with quantum cirenits. This step in-

© of utility  velves translating the classical problem to the quantum

°
Qiskit Machine Learning: an open-source library for quantum machine learning 5.1 DU domain, for example Fermion to qubit mapping [31, 62]
5 N ult-tolerant  Circuits at this level can be quite abstract, for example
tasks at scale on hardware and classical Gty [12] N Tulte & oy

Maria Schuld
Francesco Petruccione

EXPERT INSIGHT

ph] 19 Jun 2024

only specifying a set of Pauli rotations, some unitaries

N S | Bdoardo Al Lo e N o i . jmprised of  or other high-level mathematical operators. Importantly,
AL Emre Sabin 0. Edoardo Altamura ©,' Oscar Wallis©,! Stephen P. Wood 2.2 Auton Dekusar \eling gates  theue abstract circuits are representable in Qiskit, which

° Y . . e 5 Ata 5 Seu e n D .
Deddsn A. Millar @, Takoshi Imamichi®,* Atmushi Matuo®, Stefano Mensa and Code contributors U101 1041, contains synthesis methods to generate concrete eircuits
The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington, WA{ AD, United Kingdom - ool from them. Such concrete cireuits are formed using a
*IBM Quantum, IBM T.J. Watson Rescarch Center, Yorktown Heights, NY 10595, USA roe toolbox tard library of gates, sepresentable using intemmedi
5181 Dubtin \fter its ini.  Standard library of gates, representable v\.xmg‘»;unumry

M Quantum, IBM Rescarch Europe Ircland
! $1BM Research - 0 The pack. e quantium linguages such as OpenQASM [31],

. . UK
From qubits to algorithms, embark on the PIBM Quantum, (B Resarch | Tolgo, Ty 1035510, Japan At a current The transpiler rewrites cirenits in multiple rounds of
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l Summary and thank you!

* QML is an intersection of QC x ML x Maths

* Qiskit provides an excellent platform for QML

* Qiskit QML models are based in PQCs

* The most common approach to QML are VQAs

* Quantum encoding is the key to success (but full of traps) A t'
* Qiskit provides tools and templates for ansatz design ny q u es I O n S ?

* Measurement of circuits requires interpretation of results

* Quantum circuit design needs to consider its state evolution in Hilbert space and Available resources, see:
its parameter optimisation in classical parameter space, both have conflicting ironfrown (Jacob L. Cybulski, Enquanted)
requirements https://github.com/ironfrown/gml_bcd_lab

* Dimensionality of Hilbert space and parameter space promotes expressivity of
the circuit, however, it hampers the model trainability

* Qiskit provides powerful runtime framework for training classification (sampling)
and estimation models, equipped with noise suppression and mitigation tools

* Quantum models are highly sensitive to initialisation, so their performance needs
to be assessed across different model instances

* QML is still a research discipline
¢ Adapting ML methods to QML has not shown an advantage
* The advantage of QML over ML can only be found in Hilbert space


https://github.com/ironfrown/qml_bcd_lab

08

02

00

Example:

quantum time series analysis

Time series (TS) analysis aims to identify patterns in
historical time data and to create forecasts of what data
is likely to be collected in the future

Many TS applications, including heart monitoring,
weather forecasts, machine condition monitoring, etc.

Time series can be univariate or multivariate

Time series often show seasonality in data,
l.e. some patterns repeating over time

Sales of beer in USA Mean

is not constant

Variance
is not constant

Trend

o i is non-linear
Visibly not stationary

50 100 150 200 50 300
Range

Quantum time series analysis is hard!

* TS values are dependent on the preceding values!
* Distinction between consecutive TS values is small!

* There are several different types of TS models, e.g.

*  The first group are curve-fitting models, which are
trained to fit a function to a sample of data points, to
predict data values at specific points in time

*  The second group are forecasting models, which are
trained to predict future data points from their preceding
temporal context (a fixed-size window sliding over TS)

*  Majority of statistical forecasting methods require
strict data preparation, such as dimensionality
reduction, TS aggregation, imputation of missing
values, removal of noise and outliers, adherence to
normality and homoskedasticity, they need to be
stationary

* QML methods do not have such strict requirements,
and are promising for effective time series analysis
and forecasting!
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S1 (single encoding layer) ZZ feature map xqnn_standard_model
0 '. . t * This QNN model consists of two
q . . GL - GL - - components, i.e. (1) the ZZ feature
' map, and (2) a TwolLocal ansatz.
qz > >
—. . é This QNN architecture is commonly
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expressivity of the quantum circuit.
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xqnn m_m |
S Wi W2 W3 gnn_custom_mode
a0 Elgbs » ) i3 > ) & & This is a custom-built QNN model. It is composed of (1) an angle encoding
feature map of Ry rotation gates; and (2) an ansatz that is wider than the
& ‘. “ GL “ GL QL “ encoding layers and consisting of several trainable layers of Rx, Ry and Rz
parameterised blocks interspersed with entangling blocks of CNOT gates
% -. “ J’ “ €L “ arranged in a circular fashion.
q
i -. “ é “ é “ Custom models are often used when facing training difficulties, e.g. to
a B E-E R Fe. improve the circuit trainability by reducing the its entanglement (fewer CNOT
gates) or to add trainable parameters to enhance its expressivity.

In this workshop we provide two alternative QNN models. The first features the commonly
used circuit structure relying on Qiskit supplied parameterised circuits. The second is 19/ 19
custom made and is created from the Qiskit basic building blocks (gates and parameters).
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