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Parameterised Quantum Circuits
and Variational Quantum Algorithms

Classical input data is encoded into the feature map’s 
parameters, setting the model’s initial quantum state.

The quantum state is altered by an ansatz, of parameterised 
gates (operations), which are trained by an optimiser

The final quantum state of the circuit is then measured and 
interpreted as the model’s output in the form of classical data. 

Feature Map
State

MeasurementProcessing
Quantum registers

initialised to |0>

Classical registers
with outputs measured as 0 or 1 

Cost
Fun

cost is minimised
during circuit training

Input Parameters

Weight Parameters (Trainable)

Training
Data Set

Classical 
optimiser

measured states are 
interpreted to match 

training data

Feature Map Ansatz

Variational quantum circuits are not executable!
They must first be instantiated, i.e. all of their

input and weight parameters must be assigned values!

We can create a “variational” model = 
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each 
allowing rotation of a qubit state in 
x, y or z axis (as per Bloch sphere).

Typically (but now always), such 
circuits consist of three blocks: 

● a feature map (input)
● an ansatz (processing)
● measurements (output)

measurement

Pauli
rotations

ZZ feature map
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Qiskit ML models and related algorithms:
● Quantum Neural Networks (QNN, VQC/R, QCNN, qGAN)
● Quantum Kernel Methods (Feature Maps, Estimators)
● Quantum Support Vector Machines (QSVM, QSVC/R)
● Quantum Bayesian Modelling (Qbayesian)
● Quantum Kernel Principal Components Analysis (QKPCA)
● Quantum Clustering Algorithms (QCA k-NN, DQC)
● Quantum Optimisation Algorithms (QAOA, QUBO)

Sahin, M.E., Altamura, et al., 2025. Qiskit Machine Learning: an open-source 
library for quantum machine learning tasks at scale on quantum hardware 
and classical simulators. ArXiv.2505.17756.

Olivier Ezratty, Understanding Quantum Technologies (2024)

Other open source or published algorithms
● Quantum Fourier Analysis (QFT, QFFT)
● Quantum Sequence Models (QRNN, QLSTM, QGRU)
● Quantum Annealing / Quantum Adiabatic Algorithm (QAA)
● Quantum Boltzmann Machines (QBM, QRBM))
● Quantum Self-Attention and Transformers
● Quantum Random Forest (QRF)
● Quantum k-Nearest Neighbour (QkNN)
● Quantum Hopfield Associative Memory (QHAM)
● Quantum Reinforcement Learning (QRL)
● Quantum Genetic Algorithms (QGA)
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sin(x)

Data encoding strategies
Data encoding

There are many methods of data embedding, such as: 
the basis, angle, amplitude, QRAM, ...  encoding, 

In this workshop we will rely on angle encoding realised 
as qubit state rotation by the angle defined by the data.

The rotation operators are always available in a quantum 
platform API, e.g. Rx, Ry, Rz, P or U (xyz).

Typically, the encoding rotation is performed around x or y 
axis, or both (allowing two values per qubit).

Rotations are relative to a specific qubit state, commonly 
starting at |0⟩ state, or (|0⟩+|1⟩)/sqrt(2), which require 
qubits to be initialised in these states.

The encoded value could be represented either by the 
angular rotation, or the amplitude of the qubit projective 
measurement (Z).

Input data can also be repeatedly encoded and spread 
around the circuit, which is called data reuploading, and 
which is known to improve the model performance.

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(-α)

Ry(+β)

y

[0]

+a

-b

cos(x)

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(+α)

Ry(+β)
y

[0]

+a

-b

Input
Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
Ry angles used: [1.047, 0.723, 2.094]
  

Measurements
Probabilities:  [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]
Amplitudes:     [0.5, 0.75, -0.5]

Rotation relative to 
|0⟩ initialisation Rotation relative to

H initialisation

Rotations were relative to 
the evolving state, here |0⟩

Note that training will place qubit 
states in areas x < 0 and arbitrarily 
around the z axis. Measurements 
of such states cannot distinguish 
them from “pure” x > 0 and z = 0.
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Ansatz design and training
A sample curve fitting model ...

feature maps vary in: 
structure and function (!!!)

ansatze vary in:
● width (qubits #)
● depth (layers #)
● dimensions (param #)
● structure (e.g. funnelling)
● entangling (circular, linear, sca)

ansatz layers consist of: 
rotation blocks and entangling blocks
of R(x, y, z) and CNOT gates

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy, 
hinge-embedding, Kullback-Leibner divergence

different optimisers:
gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit execution on:
simulators (CPUs), accelerators (GPUs) and

real quantum machines (QPUs)

measurement

Pauli
rotations

rotation gates 
alter qubit states 
around x, y, z 
axes

(entanglement)(rotation)

Beware that 
adding qubits adds

parameters and entanglements!

The number of states represented by the 
circuit grows exponentially with the 

number of qubits!

To execute a circuit we just apply it to input data 
and the optimum parameters

S1 S2Wb1 Wb2 Wa1

Encoding of classical data in a quantum circuit is 
not what our ML experience tells us about inputs !

Data reuploading across circuit’s width and depth
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Commonly used
measurements and interpretation

Quantum circuits can be measured in many ways, e.g.
● all qubits (global cost / measurement)
● a few selected qubits (local cost / measurement)
● groups of qubits (each as a variable value)

And received in many different formats, e.g.
● as counts of outcomes (repeated measurements)
● as probabilities of outcomes (e.g. P(|0111⟩))
● as Pauli expectation values (i.e. of eigenvalues)
● as expectation of interpreted values (e.g. 0 to 15)
● as variance, etc.

Repeated measurement can be interpreted as outcomes of 
different types, e.g. 

● as a probability distribution (as is)
● as a series of values (via expvals)
● as a binary outcome:

single qubit measurement or parity of kets 
● as an integer:

most probable ket in multi-qubit measurement 
● as a continuous variable:

probability of the selected ket (e.g. |0n⟩)

or

or

integer logical

float

variable a

variable b

global cost local cost

Or we can measure 
expectation values
of the circuit state
and interpret them as a 
series of values in the 
range [-1..+1]

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

Beware that 
adding 1 measurement → 

doubles the number of outcomes!

So... having n
measurements leads to

2n outcomes

samplingsampling

estimation
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Working with quantum models
Hilbert Space vs Parameters Space

● Hilbert state space (dim = the number of 
qubits) is the quantum realm where the models 
and their states evolve in response to unitary 
operations as defined by the circuit gates

● Data encoding brings in classical data into the 
Hilbert space as unique and correlated 
quantum states during the model execution

● Layers of circuit gates determine the 
evolution of the quantum model's initial state 
into its final state during the circuit execution

● Trainable parameter space is a classical 
multi-dimensional space of circuit gate 
parameters, which the optimiser navigates

● Entanglements (defined by CNOTs) create 
and correlate non-separable qubit states, 
which alter the parameter space geometry, and 
also the cost landscape used by the optimiser

● Measurement of individual qubits collapses 
their states, consequently projecting the circuit 
state onto classical outcomes

● The mapping from the quantum space to the 
classical parameter loses some information!

θ2 θ1

Cost /
Fidelity

Local
Minimum

Cost 
Landscape

Optimisation
Path

Parameter 
Space

Hilbert 
Space

Noise!

Real
Solution
(State)

Global
Minimum

Hamiltonian
Problem 

Representation

Optimisers can only 
see the shape of the
parameter space

Parameterised 
Quantum Circuit

Nonlocal interactions
(due to entanglements)

Mapping from the
quantum space to 
parameters space
loses information

Evolving model states,
as influenced by unitary

ops and their params

Entanglements twist 
and deform the 
parameter space
creating non-local
interactions

Model and its 
evolving state

Model and
its cost

Results and 
gradients are 

calculated here

Results and 
gradients are 

used here

Circuit execution 
takes place here
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The curseThe curse
of dimensionality

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on 
the quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

45-D space4-D space

optimum
optimum

initial point initial point

Note how distribution of 
pairwise distances between 

points within an n-ball 
concentrates around

the mean as the
dimension increases

cost landscape
surface Barren Plateaus (too many dimensions)

● Pairwise distances between uniformly distributed points in high-
dimensional space become (almost) identical, and the surface of 
such a space is almost flat (n-ball value is near its surface).

● In a quantum model with a high-D parameter space, the cost 
landscape is nearly flat, the situation called barren plateau (BP).

● In high-D parameter space, models sampled by the optimiser 
are very sparse in both Hilbert space and parameter space.

● When BPs emerge, the optimiser struggles finding the optimum.
● Selecting the optimisation initial point far from the optimum 

(e.g. random) makes it even more difficult !

There are some well-known BP countermeasures
● use fewer qubits / layers / parameters
● use local cost functions (do not measure all qubits)
● use non-Euclidean metrics (e.g. Fisher Information Metric)
● beware of random params initialisation (and keep them small)
● use BP-resistant model design (e.g. layer-by-layer dev)
● use BP-resistant models (e.g. QCNNs)

Note how
volume (grey) in 

n-ball shrinks to 0
(max n=5)

volume
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Qiskit QML
Workshop

Why Qiskit?
● Accessible from Python, Rust, C++ and more...
● Has a standard set of quantum state operations
● Supports creation of flexible QML algorithms
● Executes on simulators and quantum hardware
● Supports hardware accelerators (e.g. GPUs)
● Provides tools for error mitigation
● Utilises variety of quantum gradients models
● Supports hybrid quantum-classical models
● Provides many QML models, e.g. QNNs, QCNN, 

QAE, QSVM and Bayesian models
● Can be extended with PyTorch and TensorFlow
● Among quantum SDKs, it is the best performer
● It is largely hardware agnostic via vendor backends
● Supports IBM quantum backend and runtime
● It is complex and its core design changes too often!

Qiskit QML tasks (time series forecasting):
● Add ML 0.8.3 package to Qiskit 1.4.4 (Python 3.11)
● Create standard and custom models to fit simple data
● Learn the interaction b|n estimator and regressor
● Explore the impact of ansatz structure on performance
● Explore the impact of observables on performance
● Explore the impact of optimiser on performance
● Challenge: Apply your skills to chaotic data
● Reflection: Refine your QML development process

Key takeaways:
● Plan model development, tests and experiments
● Data encoding is crucial to model performance
● Carefully consider your quantum model initialisation
● More params and entanglements improve expressivity
● More params and entanglements reduce trainability
● Dealing with the curse of dimensionality
● High dimensional parameter space upsets even non-

gradient optimisers due to model sparsity
● More training often does not eliminate problems!
● Selection of appropriate optimisers, observables and 

custom models, may be necessary to break the 
performance swamp
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QML for 
time series analysis

● TS values are dependent on the preceding values!
● Distinction between consecutive TS values is small!
● There are several different types of TS models, e.g.

● The first group are curve-fitting models, which are 
trained to fit a function to a sample of data points, to 
predict data values at specific points in time

● The second group are forecasting models, which are 
trained to predict future data points from their preceding 
temporal context (a fixed-size window sliding over TS) 

● Majority of statistical forecasting methods require 
strict data preparation, such as dimensionality 
reduction, TS aggregation, imputation of missing 
values, removal of noise and outliers, adherence to 
normality and homoskedasticity, they need to be 
stationary

● QML methods do not have such strict requirements, 
and are promising for effective time series analysis 
and forecasting!

Sales of beer in USA Mean 
is not constant

Variance
is not constant

Trend
is non-linear 

Visibly not stationary

● Time series (TS) analysis aims to identify patterns in 
historical time data and to create forecasts of what data 
is likely to be collected in the future

● Many TS applications, including heart monitoring, 
weather forecasts, machine condition monitoring, etc.

● Time series can be univariate or multivariate
● Time series often show seasonality in data, 

i.e. some patterns repeating over time

Quantum time series analysis is hard!
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S1 (single encoding layer)

W1 (trainable layer) W2 (trainable layer)

xqnn_standard_model

This QNN model consists of two 
components, i.e. (1) the ZZ feature 
map, and (2) a TwoLocal ansatz. 

This QNN architecture is commonly 
used and considered to enhance 
expressivity of the quantum circuit.

xqnn_custom_model

This is a custom-built QNN model. It is composed of (1) an angle encoding 
feature map of Ry rotation gates; and (2) an ansatz that is wider than the 
encoding layers and consisting of several trainable layers of Rx, Ry and Rz 
parameterised blocks interspersed with entangling blocks of CNOT gates 
arranged in a circular fashion.

Custom models are often used when facing training difficulties, e.g. to 
improve the circuit trainability by reducing the its entanglement (fewer CNOT 
gates) or to add trainable parameters to enhance its expressivity.

W1 W2 W3S

TwoLocal anzatz

ZZ feature map

In this workshop we provide two alternative QNN models. The first features the commonly 
used circuit structure relying on Qiskit supplied parameterised circuits. The second is 
custom made and is created from the Qiskit basic building blocks (gates and parameters).
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Training a simple
TS Qiskit estimator

fit
training

loop

initial weights

PQC

observablesinput params

weight params gradients

Estimator

Regressor

Optimiser

PQC Creator

meta-params

architecture

loss function Callback

Estimator creates the physical circuit 
using the observables, input parameters 
and weight parameters, and the gradient 
method used in the calculation of 
expectation values. It then executes the 
circuit by relying on a hardware specific 
estimator primitive. It returns the 
calculated expectation values.

Regressor starts with the model’s
 initial weights. It then passes the 

current parameter values (inputs and 
weights) to the Estimator and receives 
back the observed expectation values 

and their gradients, which can be used 
by an optimiser to define the overall 

cost landscape and determine the next 
step in the circuit weights optimisation. 

estimator
primitive

training log

Qiskit Optimiser provides function 
fit which executes a training loop, 
performing: a forward pass which 
applies the model with its current 
parameters to training data, loss 
function, and a backward pass 
to improve the model parameters.

data

Dataset is to be prepared, cleaned and 
partitioned for training and testing.

Parameter 
Space

Hilbert 
Space

Via the Optimiser 
Regressor invokes a 

callback function to log 
the current weights

and cost.
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Task: improve a forecasting model for two datasets

model under-trained
“poor” fit

smaller weights and more 
training epochs,

still under-trained, but...

after C

more layers,
different observables and 

different optimiser

Change: new dataset using the 
standard and custom QNN model

started with standard model, more 
epochs - more improvement, 

different model - best fit

A

C

D
A

H

after H

Two Sins data Mackie-Glass data

...

B

“better” fit

“best” fit “great” fit but can be further improved

B

after B

Often incremental changes result only in 
small improvements, we may need a drastic 
change: a model, optimiser or observables
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Let’s look at the code
Resources for this session, see:
ironfrown (Jacob L. Cybulski, Enquanted)
https://github.com/ironfrown/qml_bcd_lab

https://github.com/ironfrown/qml_bcd_lab
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Quantum model performance:
Scoring a quantum model (different example)

Quantum model training relies on the training data and a loss function to guide the 
optimiser, e.g. L2Loss (MSE cost), however, other performance metrics may also be 
needed, e.g. MSE, MAE or R2, calculated for training, validation and test data.

Therefore, at each optimisation step, the model parameters are saved for later use. 
These parameters values can be assigned to the weights of the model circuit, which can 
then be scored using all data partitions, against the expected values (figure bottom-left).

However, as a quantum model performance is highly sensitive to its initialisation, it is also 
advisable to run multiple, differently initialised, instances of the same model. Subsequently 
we can analyse a distribution of their performance results, e.g. here we present 5 instances 
of the same model with identical configurations (figure bottom-middle).

When doing so, it is also possible to present the level of model’s fit to data, depending on it 
best, median or worst instance performance (figures right).

In doing so, our performance assessment can be reported in honest and unbiased way.

Mean Square Error (MSE)
for a single model
and both training

and test data

Mean Absolute Error (MAE)
for 5 model instances

on both training
and test data

Best
model’s fit

(in test)

Median
model’s fit

(in test)

Worst
model’s fit

(in test)
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Recommended reading
on QML with Qiskit
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Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Images from Unsplash and Wikipedia

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

Available resources, see:
ironfrown (Jacob L. Cybulski, Enquanted)
https://github.com/ironfrown/qml_bcd_lab

https://github.com/ironfrown/qml_bcd_lab
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Training a simple
Qiskit estimator

fit
training

loop

initial weights

PQC

observablesinput params

weight params gradients

Estimator

Regressor

Optimiser

PQC Creator

meta-params

architecture

loss function Callback

Estimator creates the physical circuit 
using the observables, input parameters 
and weight parameters, and the gradient 
method used in the calculation of 
expectation values. It then executes the 
circuit by relying on a hardware specific 
estimator primitive. It returns the 
calculated expectation values.

Regressor starts with the model’s
 initial weights. It then passes the 

current parameter values (inputs and 
weights) to the Estimator and receives 
back the observed expectation values 

and their gradients, which can be used 
by an optimiser to define the overall 

cost landscape and determine the next 
step in the circuit weights optimisation. 

estimator
primitive

training log

Qiskit Optimiser provides function 
fit which executes a training loop, 
performing: a forward pass which 
applies the model with its current 
parameters to training data, loss 
function, and a backward pass 
to improve the model parameters.

data

Dataset is to be prepared, cleaned and 
partitioned for training and testing.

Parameter 
Space

Hilbert 
Space

Via the Optimiser 
Regressor invokes a 

callback function to log 
the current weights

and cost.
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