
 1 / 19

An introduction to
Quantum Machine Learning in Qiskit

Jacob L. Cybulski
Enquanted, Australia

QML and its aims
Parameterised circuits
Variational quantum algorithms
Data encoding / angle encoding
State measurement
Ansatz design and training
Model geometry and gradients
Parameters optimisation
Curse of dimensionality
QML readings
Qiskit demo and tasks (TS forecasting)
Summary and Q&A

October 10, 2025, Adam Mickiewicz University in Poznań, Poland.

Secrets revealed in this session:

To improve understanding of
VQAs and skills in building
quantum machine learning
models and their optimisation

measurement

Pauli
rotations

We will assume
some knowledge of

Quantum Computing
ML, Qiskit and Python

Creative Commons CC BY-NC-ND

 2 / 19

Quantum ML
aims of this session

Chemistry /
Pharmaceutical

Bio-
Technology

Medical /
Healthcare

Energy /
Resources

Aerospace /
Automotive

Transport /
Logistics

Materials /
Manufacturing

Finance /
Insurance Networks /

Security

Environment

Economy

People

Organisations and
Society

QML

Quantum
Mechanics

Computer
Science

Maths &
Stats

MLQC

QM
Maths

Jacob L. Cybulski, Quantum Business Series (Deakin, RMIT, ACS, Warsaw School of Economics)
Jacob L. Cybulski, Quantum Computing Intro Series (SheQuantum, Assoc of Polish Profs in Australia)

2021-2025

this session aims at
explaining the nature

of QML models

QML
 applications

Jacob Cybulski, Founder
Enquanted, Australia

 3 / 19

Parameterised Quantum Circuits
and Variational Quantum Algorithms

Classical input data is encoded into the feature map’s
parameters, setting the model’s initial quantum state.

The quantum state is altered by an ansatz, of parameterised
gates (operations), which are trained by an optimiser

The final quantum state of the circuit is then measured and
interpreted as the model’s output in the form of classical data.

Feature Map
State

MeasurementProcessing
Quantum registers

initialised to |0>

Classical registers
with outputs measured as 0 or 1

Cost
Fun

cost is minimised
during circuit training

Input Parameters

Weight Parameters (Trainable)

Training
Data Set

Classical
optimiser

measured states are
interpreted to match

training data

Feature Map Ansatz

Variational quantum circuits are not executable!
They must first be instantiated, i.e. all of their

input and weight parameters must be assigned values!

We can create a “variational” model =
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each
allowing rotation of a qubit state in
x, y or z axis (as per Bloch sphere).

Typically (but now always), such
circuits consist of three blocks:

● a feature map (input)
● an ansatz (processing)
● measurements (output)

measurement

Pauli
rotations

ZZ feature map

 4 / 19

Q
iskit M

L
 R

eso
u

rces

Qiskit ML models and related algorithms:
● Quantum Neural Networks (QNN, VQC/R, QCNN, qGAN)
● Quantum Kernel Methods (Feature Maps, Estimators)
● Quantum Support Vector Machines (QSVM, QSVC/R)
● Quantum Bayesian Modelling (Qbayesian)
● Quantum Kernel Principal Components Analysis (QKPCA)
● Quantum Clustering Algorithms (QCA k-NN, DQC)
● Quantum Optimisation Algorithms (QAOA, QUBO)

Sahin, M.E., Altamura, et al., 2025. Qiskit Machine Learning: an open-source
library for quantum machine learning tasks at scale on quantum hardware
and classical simulators. ArXiv.2505.17756.

Olivier Ezratty, Understanding Quantum Technologies (2024)

Other open source or published algorithms
● Quantum Fourier Analysis (QFT, QFFT)
● Quantum Sequence Models (QRNN, QLSTM, QGRU)
● Quantum Annealing / Quantum Adiabatic Algorithm (QAA)
● Quantum Boltzmann Machines (QBM, QRBM))
● Quantum Self-Attention and Transformers
● Quantum Random Forest (QRF)
● Quantum k-Nearest Neighbour (QkNN)
● Quantum Hopfield Associative Memory (QHAM)
● Quantum Reinforcement Learning (QRL)
● Quantum Genetic Algorithms (QGA)

 5 / 19

sin(x)

Data encoding strategies
Data encoding

There are many methods of data embedding, such as:
the basis, angle, amplitude, QRAM, ... encoding,

In this workshop we will rely on angle encoding realised
as qubit state rotation by the angle defined by the data.

The rotation operators are always available in a quantum
platform API, e.g. Rx, Ry, Rz, P or U (xyz).

Typically, the encoding rotation is performed around x or y
axis, or both (allowing two values per qubit).

Rotations are relative to a specific qubit state, commonly
starting at |0⟩ state, or (|0⟩+|1⟩)/sqrt(2), which require
qubits to be initialised in these states.

The encoded value could be represented either by the
angular rotation, or the amplitude of the qubit projective
measurement (Z).

Input data can also be repeatedly encoded and spread
around the circuit, which is called data reuploading, and
which is known to improve the model performance.

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(-α)

Ry(+β)

y

[0]

+a

-b

cos(x)

x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(+α)

Ry(+β)
y

[0]

+a

-b

Input
Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
Ry angles used: [1.047, 0.723, 2.094]

Measurements
Probabilities: [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]
Amplitudes: [0.5, 0.75, -0.5]

Rotation relative to
|0⟩ initialisation Rotation relative to

H initialisation

Rotations were relative to
the evolving state, here |0⟩

Note that training will place qubit
states in areas x < 0 and arbitrarily
around the z axis. Measurements
of such states cannot distinguish
them from “pure” x > 0 and z = 0.

 6 / 19

Ansatz design and training
A sample curve fitting model ...

feature maps vary in:
structure and function (!!!)

ansatze vary in:
● width (qubits #)
● depth (layers #)
● dimensions (param #)
● structure (e.g. funnelling)
● entangling (circular, linear, sca)

ansatz layers consist of:
rotation blocks and entangling blocks
of R(x, y, z) and CNOT gates

different cost functions:
R2, MAE, MSE, Huber, Poisson, cross-entropy,
hinge-embedding, Kullback-Leibner divergence

different optimisers:
gradient based (Adam, NAdam and SPSA)

linear approximation methods (COBYLA)
non-linear approximation methods (BFGS)
quantum natural gradient optimiser (QNG)

circuit execution on:
simulators (CPUs), accelerators (GPUs) and

real quantum machines (QPUs)

measurement

Pauli
rotations

rotation gates
alter qubit states
around x, y, z
axes

(entanglement)(rotation)

Beware that
adding qubits adds

parameters and entanglements!

The number of states represented by the
circuit grows exponentially with the

number of qubits!

To execute a circuit we just apply it to input data
and the optimum parameters

S1 S2Wb1 Wb2 Wa1

Encoding of classical data in a quantum circuit is
not what our ML experience tells us about inputs !

Data reuploading across circuit’s width and depth

 7 / 19

Commonly used
measurements and interpretation

Quantum circuits can be measured in many ways, e.g.
● all qubits (global cost / measurement)
● a few selected qubits (local cost / measurement)
● groups of qubits (each as a variable value)

And received in many different formats, e.g.
● as counts of outcomes (repeated measurements)
● as probabilities of outcomes (e.g. P(|0111⟩))
● as Pauli expectation values (i.e. of eigenvalues)
● as expectation of interpreted values (e.g. 0 to 15)
● as variance, etc.

Repeated measurement can be interpreted as outcomes of
different types, e.g.

● as a probability distribution (as is)
● as a series of values (via expvals)
● as a binary outcome:

single qubit measurement or parity of kets
● as an integer:

most probable ket in multi-qubit measurement
● as a continuous variable:

probability of the selected ket (e.g. |0n⟩)

or

or

integer logical

float

variable a

variable b

global cost local cost

Or we can measure
expectation values
of the circuit state
and interpret them as a
series of values in the
range [-1..+1]

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

Beware that
adding 1 measurement →

doubles the number of outcomes!

So... having n
measurements leads to

2n outcomes

samplingsampling

estimation

 8 / 19

Working with quantum models
Hilbert Space vs Parameters Space

● Hilbert state space (dim = the number of
qubits) is the quantum realm where the models
and their states evolve in response to unitary
operations as defined by the circuit gates

● Data encoding brings in classical data into the
Hilbert space as unique and correlated
quantum states during the model execution

● Layers of circuit gates determine the
evolution of the quantum model's initial state
into its final state during the circuit execution

● Trainable parameter space is a classical
multi-dimensional space of circuit gate
parameters, which the optimiser navigates

● Entanglements (defined by CNOTs) create
and correlate non-separable qubit states,
which alter the parameter space geometry, and
also the cost landscape used by the optimiser

● Measurement of individual qubits collapses
their states, consequently projecting the circuit
state onto classical outcomes

● The mapping from the quantum space to the
classical parameter loses some information!

θ2 θ1

Cost /
Fidelity

Local
Minimum

Cost
Landscape

Optimisation
Path

Parameter
Space

Hilbert
Space

Noise!

Real
Solution
(State)

Global
Minimum

Hamiltonian
Problem

Representation

Optimisers can only
see the shape of the
parameter space

Parameterised
Quantum Circuit

Nonlocal interactions
(due to entanglements)

Mapping from the
quantum space to
parameters space
loses information

Evolving model states,
as influenced by unitary

ops and their params

Entanglements twist
and deform the
parameter space
creating non-local
interactions

Model and its
evolving state

Model and
its cost

Results and
gradients are

calculated here

Results and
gradients are

used here

Circuit execution
takes place here

 9 / 19

The curseThe curse
of dimensionality

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on
the quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

45-D space4-D space

optimum
optimum

initial point initial point

Note how distribution of
pairwise distances between

points within an n-ball
concentrates around

the mean as the
dimension increases

cost landscape
surface Barren Plateaus (too many dimensions)

● Pairwise distances between uniformly distributed points in high-
dimensional space become (almost) identical, and the surface of
such a space is almost flat (n-ball value is near its surface).

● In a quantum model with a high-D parameter space, the cost
landscape is nearly flat, the situation called barren plateau (BP).

● In high-D parameter space, models sampled by the optimiser
are very sparse in both Hilbert space and parameter space.

● When BPs emerge, the optimiser struggles finding the optimum.
● Selecting the optimisation initial point far from the optimum

(e.g. random) makes it even more difficult !

There are some well-known BP countermeasures
● use fewer qubits / layers / parameters
● use local cost functions (do not measure all qubits)
● use non-Euclidean metrics (e.g. Fisher Information Metric)
● beware of random params initialisation (and keep them small)
● use BP-resistant model design (e.g. layer-by-layer dev)
● use BP-resistant models (e.g. QCNNs)

Note how
volume (grey) in

n-ball shrinks to 0
(max n=5)

volume

 10 / 19

Qiskit QML
Workshop

Why Qiskit?
● Accessible from Python, Rust, C++ and more...
● Has a standard set of quantum state operations
● Supports creation of flexible QML algorithms
● Executes on simulators and quantum hardware
● Supports hardware accelerators (e.g. GPUs)
● Provides tools for error mitigation
● Utilises variety of quantum gradients models
● Supports hybrid quantum-classical models
● Provides many QML models, e.g. QNNs, QCNN,

QAE, QSVM and Bayesian models
● Can be extended with PyTorch and TensorFlow
● Among quantum SDKs, it is the best performer
● It is largely hardware agnostic via vendor backends
● Supports IBM quantum backend and runtime
● It is complex and its core design changes too often!

Qiskit QML tasks (time series forecasting):
● Add ML 0.8.3 package to Qiskit 1.4.4 (Python 3.11)
● Create standard and custom models to fit simple data
● Learn the interaction b|n estimator and regressor
● Explore the impact of ansatz structure on performance
● Explore the impact of observables on performance
● Explore the impact of optimiser on performance
● Challenge: Apply your skills to chaotic data
● Reflection: Refine your QML development process

Key takeaways:
● Plan model development, tests and experiments
● Data encoding is crucial to model performance
● Carefully consider your quantum model initialisation
● More params and entanglements improve expressivity
● More params and entanglements reduce trainability
● Dealing with the curse of dimensionality
● High dimensional parameter space upsets even non-

gradient optimisers due to model sparsity
● More training often does not eliminate problems!
● Selection of appropriate optimisers, observables and

custom models, may be necessary to break the
performance swamp

 11 / 19

QML for
time series analysis

● TS values are dependent on the preceding values!
● Distinction between consecutive TS values is small!
● There are several different types of TS models, e.g.

● The first group are curve-fitting models, which are
trained to fit a function to a sample of data points, to
predict data values at specific points in time

● The second group are forecasting models, which are
trained to predict future data points from their preceding
temporal context (a fixed-size window sliding over TS)

● Majority of statistical forecasting methods require
strict data preparation, such as dimensionality
reduction, TS aggregation, imputation of missing
values, removal of noise and outliers, adherence to
normality and homoskedasticity, they need to be
stationary

● QML methods do not have such strict requirements,
and are promising for effective time series analysis
and forecasting!

Sales of beer in USA Mean
is not constant

Variance
is not constant

Trend
is non-linear

Visibly not stationary

● Time series (TS) analysis aims to identify patterns in
historical time data and to create forecasts of what data
is likely to be collected in the future

● Many TS applications, including heart monitoring,
weather forecasts, machine condition monitoring, etc.

● Time series can be univariate or multivariate
● Time series often show seasonality in data,

i.e. some patterns repeating over time

Quantum time series analysis is hard!

 12 / 19

F
o

recastin
g

 m
o

d
els

S1 (single encoding layer)

W1 (trainable layer) W2 (trainable layer)

xqnn_standard_model

This QNN model consists of two
components, i.e. (1) the ZZ feature
map, and (2) a TwoLocal ansatz.

This QNN architecture is commonly
used and considered to enhance
expressivity of the quantum circuit.

xqnn_custom_model

This is a custom-built QNN model. It is composed of (1) an angle encoding
feature map of Ry rotation gates; and (2) an ansatz that is wider than the
encoding layers and consisting of several trainable layers of Rx, Ry and Rz
parameterised blocks interspersed with entangling blocks of CNOT gates
arranged in a circular fashion.

Custom models are often used when facing training difficulties, e.g. to
improve the circuit trainability by reducing the its entanglement (fewer CNOT
gates) or to add trainable parameters to enhance its expressivity.

W1 W2 W3S

TwoLocal anzatz

ZZ feature map

In this workshop we provide two alternative QNN models. The first features the commonly
used circuit structure relying on Qiskit supplied parameterised circuits. The second is
custom made and is created from the Qiskit basic building blocks (gates and parameters).

 13 / 19

Training a simple
TS Qiskit estimator

fit
training

loop

initial weights

PQC

observablesinput params

weight params gradients

Estimator

Regressor

Optimiser

PQC Creator

meta-params

architecture

loss function Callback

Estimator creates the physical circuit
using the observables, input parameters
and weight parameters, and the gradient
method used in the calculation of
expectation values. It then executes the
circuit by relying on a hardware specific
estimator primitive. It returns the
calculated expectation values.

Regressor starts with the model’s
 initial weights. It then passes the

current parameter values (inputs and
weights) to the Estimator and receives
back the observed expectation values

and their gradients, which can be used
by an optimiser to define the overall

cost landscape and determine the next
step in the circuit weights optimisation.

estimator
primitive

training log

Qiskit Optimiser provides function
fit which executes a training loop,
performing: a forward pass which
applies the model with its current
parameters to training data, loss
function, and a backward pass
to improve the model parameters.

data

Dataset is to be prepared, cleaned and
partitioned for training and testing.

Parameter
Space

Hilbert
Space

Via the Optimiser
Regressor invokes a

callback function to log
the current weights

and cost.

 14 / 19

In
 search

 o
f a so

lu
tio

n
!

Task: improve a forecasting model for two datasets

model under-trained
“poor” fit

smaller weights and more
training epochs,

still under-trained, but...

after C

more layers,
different observables and

different optimiser

Change: new dataset using the
standard and custom QNN model

started with standard model, more
epochs - more improvement,

different model - best fit

A

C

D
A

H

after H

Two Sins data Mackie-Glass data

...

B

“better” fit

“best” fit “great” fit but can be further improved

B

after B

Often incremental changes result only in
small improvements, we may need a drastic
change: a model, optimiser or observables

 15 / 19

Let’s look at the code
Resources for this session, see:
ironfrown (Jacob L. Cybulski, Enquanted)
https://github.com/ironfrown/qml_bcd_lab

https://github.com/ironfrown/qml_bcd_lab

 16 / 19

Quantum model performance:
Scoring a quantum model (different example)

Quantum model training relies on the training data and a loss function to guide the
optimiser, e.g. L2Loss (MSE cost), however, other performance metrics may also be
needed, e.g. MSE, MAE or R2, calculated for training, validation and test data.

Therefore, at each optimisation step, the model parameters are saved for later use.
These parameters values can be assigned to the weights of the model circuit, which can
then be scored using all data partitions, against the expected values (figure bottom-left).

However, as a quantum model performance is highly sensitive to its initialisation, it is also
advisable to run multiple, differently initialised, instances of the same model. Subsequently
we can analyse a distribution of their performance results, e.g. here we present 5 instances
of the same model with identical configurations (figure bottom-middle).

When doing so, it is also possible to present the level of model’s fit to data, depending on it
best, median or worst instance performance (figures right).

In doing so, our performance assessment can be reported in honest and unbiased way.

Mean Square Error (MSE)
for a single model
and both training

and test data

Mean Absolute Error (MAE)
for 5 model instances

on both training
and test data

Best
model’s fit

(in test)

Median
model’s fit

(in test)

Worst
model’s fit

(in test)

 17 / 19

Recommended reading
on QML with Qiskit

 18 / 19

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Images from Unsplash and Wikipedia

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.

Available resources, see:
ironfrown (Jacob L. Cybulski, Enquanted)
https://github.com/ironfrown/qml_bcd_lab

https://github.com/ironfrown/qml_bcd_lab

 19 / 19

Training a simple
Qiskit estimator

fit
training

loop

initial weights

PQC

observablesinput params

weight params gradients

Estimator

Regressor

Optimiser

PQC Creator

meta-params

architecture

loss function Callback

Estimator creates the physical circuit
using the observables, input parameters
and weight parameters, and the gradient
method used in the calculation of
expectation values. It then executes the
circuit by relying on a hardware specific
estimator primitive. It returns the
calculated expectation values.

Regressor starts with the model’s
 initial weights. It then passes the

current parameter values (inputs and
weights) to the Estimator and receives
back the observed expectation values

and their gradients, which can be used
by an optimiser to define the overall

cost landscape and determine the next
step in the circuit weights optimisation.

estimator
primitive

training log

Qiskit Optimiser provides function
fit which executes a training loop,
performing: a forward pass which
applies the model with its current
parameters to training data, loss
function, and a backward pass
to improve the model parameters.

data

Dataset is to be prepared, cleaned and
partitioned for training and testing.

Parameter
Space

Hilbert
Space

Via the Optimiser
Regressor invokes a

callback function to log
the current weights

and cost.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

