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P aram ete r i se d Q u antu m C i rcu it S Variational quantum circuits are not executable!

They must first be instantiated, i.e. all of their

and Variational Quantum A Igorithms input and weight parameters must be assigned values!
Quantum registers State
initialised to |0> Feature Map Processing Measurement
\ ZZ feature map | | | l

_________________________________________________________________ )
Classical registers / Classical
with outputs measured as 0 or 1 op timiser

We can create a “variational” model =
a circuit template with parameterised
gates, e.g. P(a), Ry(a) or Rz(a), each
allowing rotation of a qubit state in
X,y or z axis (as per Bloch sphere).

measured states are
interpreted to match
training data

cost is minimised
during circuit training

Pauli

rotations Classical input data is encoded into the feature map’s

parameters, setting the model’s initial quantum state.

* The quantum state is altered by an ansatz, of parameterised
gates (operations), which are trained by an optimiser

The final quantum state of the circuit is then measured and
interpreted as the model’s output in the form of classical data.

Typically (but now always), such [ _.-----="
circuits consist of three blocks:

* afeature map (input)
* an ansatz (processing)
* measurements (output)

—— -
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Kernel algorithms Neural network algorithms
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. e mm e m VQC \
QSR LoQsve : | 7 | [Torch ©
patitt N Attt Neural Network : Neural Network 1 Connector
Classifier H Regressor !
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Kernel classes
. Neural network classes
Quantum . o i
Kemel <« Trainable Fidelity = Fidelity Quantum ® Tnf Teorith
Trainer Quantm?n Kernel | Kegnel Neural Networlk sampler/Estimator _ |~ erence a‘goriiims
\ Trainable Kernel | Base Kernel (I;N) Q:N QBay:sian
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Optimizers

Core algorithms Fidg]ity

Qiskit primitives

Qiskit ML models and related algorithms:

.
Sampler

Oth

* Quantum Neural Networks (QNN, VQC/R, QCNN, gGAN) .

* Quantum Kernel Methods (Feature Maps, Estimators)
* Quantum Support Vector Machines (QSVM, QSVC/R)
* Quantum Bayesian Modelling (Qbayesian)

* Quantum Kernel Principal Components Analysis (QKPCA) .

* Quantum Clustering Algorithms (QCA k-NN, DQC)
* Quantum Optimisation Algorithms (QAOA, QUBO)

Sahin, M.E., Altamura, et al., 2025. Qiskit Machine Learning: an open-source
library for quantum machine learning tasks at scale on quantum hardware
and classical simulators. ArXiv.2505.17756.

Olivier Ezratty, Understanding Quantum Technologies (2024)

Gradients #..

-
Estimator

=

er open source or published algorithms

Quantum Fourier Analysis (QFT, QFFT)

Quantum Sequence Models (QRNN, QLSTM, QGRU)
Quantum Annealing / Quantum Adiabatic Algorithm (QAA)
Quantum Boltzmann Machines (QBM, QRBM))
Quantum Self-Attention and Transformers

Quantum Random Forest (QRF)

Quantum k-Nearest Neighbour (QkNN)

Quantum Hopfield Associative Memory (QHAM)
Quantum Reinforcement Learning (QRL)

Quantum Genetic Algorithms (QGA)



Note that training will place qubit
states in areas x < 0 and arbitrarily

Data encoding strategies kiAol Gl

them from “pure” x >0 and z = 0.

Data encoding TN
, cos(x) z A\ 0 z A 0 7 sin(x)

There are many methods of data embedding, suchas: 7 | > SN -
the basis, angle, amplitude, QRAM, ... encoding, i N R\
In this workshop we will rely on angle encoding realised ol oo - Y N
as qubit state rotation by the angle defined by the data. " x N\ e x

Ry(+B) / * v
The rotation operators are always available in a quantum ¥ « ’
platform API, e.g. Rx, Ry, Rz, P or U (xyz). ol 0.rpi2 Wl osoi]
Typically, the encoding rotation is performed around x or y 0 mitiahsation. 1V R itaisaion 11
aXIS, Or both (aIIOWIng tWO Values per qu|t). s Measurement of individual qubit amplitudes
Rotations are relative to a specific qubit state, commonly Ny
starting at |0) state, or (|0)+|1))/sqrt(2), which require o

04

qubits to be initialised in these states.

The encoded value could be represented either by the
angular rotation, or the amplitude of the qubit projective 2
measurement (2).

Input data can also be repeatedly encoded and spread

0z

oo

ExpVal = P(0) - P{1)

Rotations were relative to
0.4 the evolving state, here |0)

around the circuit, which is called data reuploading, and Input : i X
; ; i Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
which is known to improve the model performance. Ry angles used:  [1.047. 0.723, .004]
Measurements
Maria Schuld and Francesco Petruccione. Probabilities: [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]

Machine Learning with Quantum Computers. 2nd ed. Springer, 2021. Amplitudes: [0.5, 0.75, -0.5]



Beware that
adding qubits adds

A n Satz d es i g n an d trai n i n g parameters and entanglements!

- The number of states represented by the
A Sample curve flttlng model ... circuit grows exponentially with the

number of qubits!

Encoding of classical data in a quantum circuit is
not what our ML experience tells us about inputs !

Whb1 S1 Wb2 S2 Wal

qO 'E‘ A[000], A[001]. A[002] 0 * A[009], A[010), A[011]

n B003]. BlﬂLgﬂl- B1005) mfgza,-ﬂ A[003], AlﬂUDdl A[005] _M_

o v ] [us ] [ u ] o ] ?

BJ00G]. B[007]. B[00S] [x =2, 2] A[006], A[00T). A[008] A[015], A[016). A[017]
feature maps vary in: different cost functions:
structure and function (”'). rotation gates measurement R2, MAE, MSE, Huber, Poisson, cross-entropy,
) alter qubit states hinge-embedding, Kullback-Leibner divergence

ansatze vary in: around x, y, z Pauli . . _ _
. width (aubits # axes rotations |8 /' _ different optimisers:
) ‘(’j"épth ((?;ye'rss #)) -------- gradient based (Adam, NAdam and SPSA)
- dimensions (param #) > //ne{:lr approximation _methods (COBYLA)
* structure (eg funne”|ng) _____ non-llneaf appl’OXImatIOI’) methOdS (BFGS)

- entangling (circular, linear, sca) quantum natural gradient optimiser (QNG)

ansatz layers consist of: circuit execution on:

rotation blocks and entangling blocks simulators (CPUSs), accelerators (GPUs) and

of R(x, y, z) and CNOT gates To execute a circuit we just apply it to input data real quantum machines (QPUSs)
and the optimum parameters



global cost local cost

Commonly used 1 } v
yu _ -—
measurements and Interpretation or ——— } orisble b
Quantum circuits can be measured in many ways, e.g. o v1 32 ? j po 41 ¥2 ¥
« all qubits (global cost / measurement)
- afew selected qubits (local cost / measurement) “*| sampling ™ e sampling
e groups of qubits (each as a variable value) ox o7
And received in many different formats, e.g. f?;m or §oso
* as counts of outcomes (repeated measurements) ‘m .
* as probabilities of outcomes (e.g. P(|0111))) ' '
* as Pauli expectation values (i.e. of eigenvalues) ol O o 0.00 . .
*  as expectation of interpreted values (e.g. 0 to 15) seSeEEsg IR 4 v
— integer — logical ——

. as variance, etc.

Measurement Qutcomes

Or we can measure

Repeated measurement can be interpreted as outcomes of
expectation values

different types, e.g. estimation of the circuit state
. - N . . o4 and interpret them as a
as a pro_bablllty dlstrlbu_tlon (as is) series of values in the
* as a series of values (via expvals) "

ExpVval

* as a binary outcome:
single qubit measurement or parity of kets
° asan integer:
most probable ket in multi-qubit measurement
* as a continuous variable: -
probability of the selected ket (e.g. |0")) § & & & &

range [-1..+1]
I Beware that
adding 1 measurement =
doubles the number of outcomes!
0.1348]000) — 0.4045|001) + 0.6742|010) + 0.5394]011) + 0.2697|100)+ SO haVIng n

0[100) + 0[101) + 00]110) + 00[111)
measurements leads to
2" outcomes

%,
%4
[ 2

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.



Working with quantum models

Cost/
Hilbert Space vs Parameters Space Results and Fidelity  optimisers can only
gradients are see the shape of the
used here parameter space
. . Nonlocal interactions
Hilbert state space (dim = the number of Parameter e entatloments Optimisation
o Space ¢ E ) Path
qubits) is the quantum realm where the models Model and
. . . Cost :
and their states evolve in response to unitary Landscape its cost

operations as defined by the circuit gates

Data encoding brings in classical data into the Minimum

Hilbert space as unique and correlated

. . Entanglements twist
guantum states during the model execution g "

and deform the

Mapping from the Minimum parameter space

|
|

Layer_s of circuit gates determint_a t_he quantum space to : | : : creating non-local
evolution of the quantum model's initial state parameters space | 1 | | | interactions
: : . . : . . loses information I I | |
into its final state during the circuit execution | l| | B | |

. . . | | | .
Trainable parameter space is a classical || 1 : = = | Hilbert
multi-dimensional space of circuit gate e == b Space
parameters, which the optimiser navigates ’

) Parameterised

Entanglements (defined by CNOTSs) create Quantum Circuit
and correlate non-separable qubit states, creu _

. ircuit execution 52 ST
which alter the parameter space geometry, and takes place here Hamilionian ~ Model and its
also the cost landscape used by the optimiser . S evolving state
Measurement of individual qubits collapses gradients are IR AR
their states, consequently projecting the circuit calculated here SE PR AT EEAREE=S ‘I‘_ /
state onto classical outcomes 6~ - e iy JUPPEI

. ~~< d thei -

The mapping from the quantum space to the T~~l ops andielparams _ -

classical parameter loses some information! ~~o_ -



The curse

of dimensionality

4-D space 45-D space
cost landscape

volume surface

> optimum

optimum

Note how
volume (grey) in
n-ball shrinks to 0
(max n=5)

initial point initial point

Smoothed Distribution of Pairwise Distances in N-Ball for Different D

Note how distribution of
pairwise distances between
points \within an n-ball
concentrates around
the mean as the
dimension increases

Probability Density

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on
the quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.
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Barren Plateaus (too many dimensions)

Pairwise distances between uniformly distributed points in high-
dimensional space become (almost) identical, and the surface of
such a space is almost flat (n-ball value is near its surface).

In a quantum model with a high-D parameter space, the cost
landscape is nearly flat, the situation called barren plateau (BP).
In high-D parameter space, models sampled by the optimiser
are very sparse in both Hilbert space and parameter space.
When BPs emerge, the optimiser struggles finding the optimum.
Selecting the optimisation initial point far from the optimum

(e.g. random) makes it even more difficult !

There are some well-known BP countermeasures

use fewer qubits / layers / parameters

use local cost functions (do not measure all qubits)

use non-Euclidean metrics (e.g. Fisher Information Metric)
beware of random params initialisation (and keep them small)
use BP-resistant model design (e.g. layer-by-layer dev)

use BP-resistant models (e.g. QCNNSs)



Qiskit QML

Workshop

Why Qiskit?

Accessible from Python, Rust, C++ and more...
Has a standard set of quantum state operations
Supports creation of flexible QML algorithms
Executes on simulators and quantum hardware
Supports hardware accelerators (e.g. GPUS)
Provides tools for error mitigation

Utilises variety of quantum gradients models
Supports hybrid quantum-classical models

Provides many QML models, e.g. ONNs, QCNN,
QAE, QSVM and Bayesian models

Can be extended with PyTorch and TensorFlow
Among quantum SDKs, it is the best performer

It is largely hardware agnostic via vendor backends
Supports IBM quantum backend and runtime

It is complex and its core design changes too often!

Qiskit QML tasks (time series forecasting):

Add ML 0.8.3 package to Qiskit 1.4.4 (Python 3.11)
Create standard and custom models to fit simple data
Learn the interaction b|n estimator and regressor
Explore the impact of ansatz structure on performance
Explore the impact of observables on performance
Explore the impact of optimiser on performance
Challenge: Apply your skills to chaotic data
Reflection: Refine your QML development process

Key takeaways:

Plan model development, tests and experiments

Data encoding is crucial to model performance
Carefully consider your quantum model initialisation
More params and entanglements improve expressivity
More params and entanglements reduce trainability
Dealing with the curse of dimensionality

High dimensional parameter space upsets even non-
gradient optimisers due to model sparsity

More training often does not eliminate problems!
Selection of appropriate optimisers, observables and
custom models, may be necessary to break the
performance swamp
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QML for
time series analysis

Time series (TS) analysis aims to identify patterns in
historical time data and to create forecasts of what data
is likely to be collected in the future

Many TS applications, including heart monitoring,
weather forecasts, machine condition monitoring, etc.

Time series can be univariate or multivariate

Time series often show seasonality in data,
l.e. some patterns repeating over time

Sales of beer in USA Mean

is not constant

Variance
is not constant

Trend

o i is non-linear
Visibly not stationary

50 100 150 200 50 300
Range

Quantum time series analysis is hard!

* TS values are dependent on the preceding values!
* Distinction between consecutive TS values is small!

* There are several different types of TS models, e.g.

*  The first group are curve-fitting models, which are
trained to fit a function to a sample of data points, to
predict data values at specific points in time

*  The second group are forecasting models, which are
trained to predict future data points from their preceding
temporal context (a fixed-size window sliding over TS)

*  Majority of statistical forecasting methods require
strict data preparation, such as dimensionality
reduction, TS aggregation, imputation of missing
values, removal of noise and outliers, adherence to
normality and homoskedasticity, they need to be
stationary

* QML methods do not have such strict requirements,
and are promising for effective time series analysis
and forecasting!

11/19
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S1 (single encoding layer) ZZ feature map xqnn_standard_model
0 '. . t * This QNN model consists of two
q . . GL - GL - - components, i.e. (1) the ZZ feature
' map, and (2) a TwolLocal ansatz.
qz > >
—. . é This QNN architecture is commonly
» i} B Ol o—© L mt -—J’ * * used and '::on?itcéered totenhance_t
expressivity of the quantum circuit.
« i oHll——e 0—-—0—9—-—0—<L--<L——
W1 (trainable layer) TwolLocal anzatz W2 (trainable layer)
H--lRoub ; EEE o o : -
— o o =L +—r— - o o cL —— -
o EE 66— oo EHEE 06— 6O EEE
xqnn m_m |
S Wi W2 W3 gnn_custom_mode
a0 Elgbs » ) i3 > ) & & This is a custom-built QNN model. It is composed of (1) an angle encoding
feature map of Ry rotation gates; and (2) an ansatz that is wider than the
& ‘. “ GL “ GL QL “ encoding layers and consisting of several trainable layers of Rx, Ry and Rz
parameterised blocks interspersed with entangling blocks of CNOT gates
% -. “ J’ “ €L “ arranged in a circular fashion.
q
i -. “ é “ é “ Custom models are often used when facing training difficulties, e.g. to
a B E-E R Fe. improve the circuit trainability by reducing the its entanglement (fewer CNOT
gates) or to add trainable parameters to enhance its expressivity.

In this workshop we provide two alternative QNN models. The first features the commonly
used circuit structure relying on Qiskit supplied parameterised circuits. The second is 12 /19
custom made and is created from the Qiskit basic building blocks (gates and parameters).



TS Qiskit estimator

Training a simple

initial weights

Dataset is to be prepared, cleaned and
partitioned for training and testing.

Data prepared for model training (“Two Sins")

—— Taning  ——

input params observables
Qiskit Optimiser provides function
fit which executes a training loop, -
performing: a forward pass which weight params gradients

applies the model with its current

Estimator creates the physical circuit

parameters to training data, /oss PQC using the observables, input parameters
function, and a backward pass o ; and weight parameters, and the gradient
to improve the model parameters. = ! method used in the calculation of
| expectation values. It then executes the
meta-params | _ Hilbert circuit by relying on a hardware specific
| fit Space estimator primitive. It returns the
| "%’;’”g calculated expectation values.
—
estimator
architecture primitive

Regressor starts with the model’s

Model training started

training log

Via the Optimiser

’”’t“a’ We’g’zts- It Ithe” e thg Regressor invokes a  (Gsa!s7) © Trers: 50 7 300, Cost: 0. 102683
current parameter values (inputs an callback function to log  (69:0:34) - Tiers: 100 / 500, cost: 0.125066

. H H - er#: , Lost: .
weights) to the Estimator and receives the current weights (00:00:29) - Iter#: 206 / 560, Cost: 0.853152
back the observed expectation values and cost (00:00:36) - Iter#: 250 / 500, Cost: ,038513
d thei di hich b d Parameter : (09:00:43) - Iter#: 380 / 500, Cost: ©.033054
and their gradients, which can be use pl (00:00:50) - Iter#: 350 / 500, Cost: 8.029146
imi i (09:00:58) - Iter#: 480 / 560, Cost: ©.027865
by an optimiser to define the overall pace (00:01:05) - Iter#: 450 / 500, Cost: ©.026759

cost landscape and determine the next
step in the circuit weights optimisation.

loss function

Total time 00:01:12, min Cost=0.026013
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Data prepared for model training (*Two Sins") Model "qnn_standard_model” (g5, fm1, ans1): Best fit Data prepared for model training (“Mackie Glass")

* —— Taining —— Testing 10 ~-- Training —— Forecast, min MSE=0.041498@98 N —— Training —o— Testing
N afterC w
308 Sos
£ oa -
- [ ” H -
Two Sins data better” fit Mackie-Glass data
o0 3 1 o 1 3 3 2 a 1 3 ) 100 200 300 400 o 600
Range (Points=150, Windows: size=5, step=2, ining#: 49, testing#: 24) Range (Points=150, Windows raining#: 49, testing#: 24) Range (Points=150, Windows: size=5, step=1, horizon=1, training#: 97, testing#: 48)
Model performance (data="qnn_standard_model", g5, fm1, ans1) (sm.emt=0.80, iter# 50) Model performance (data="qnn_standard_model*, g5, fm1, ans5) (sm.emt=0.80, iter# 64) Model performance (data="qnn_custom_model", q7, in5, ans3) (sm.emt=0.80, iter# 300)
—— Training (min Cost=0.08499 @ iter# 48) —— Training (min Cost=0.00015 @ iter# 63) —— Training (min Cost=0.01133 @ iter# 296)
0.40 030
| . started with standard model, more
mode“ undeﬂr;t_ramed more layers, epochs - more improvement,
030 : - - -
. poor” fit . different observables and ) different model - best fit
2 2 . .. @
o o1 different optimiser ‘. .
0.10
A H - B
015
0.00
0 10 20 30 40 50 o 10 20 30 40 50 60 0 50 100 150 200 250 300
IRteration fteration Iteration
Model performance (data="qnn_standard_model", g5, fm1, ans1) (sm.emt=0.80, iter# 100) Model "qnn_standard_model" (g5, fm1, ans5): Best fit Model "gnn_custom_model” (q7, in5, ans3): Best fit
T T e oo g e after H Ty o miraceomrerian Ty Fev s nesigie
smaller weights and more .
training epochs,
- - ®oa £ o4
) still under-trained, but... ~
2015 02 v
“ ” £ 02 “ ” £ -
best” fit great” fit but can be further improved
II B S S— 5 5 ; = = - = =
\ Change: new dataset using the Often incremental changes result only in

Ieration

Task: improve a forecasting model for two datasets

standard and custom QNN model

small improvements, we may need a drastic
change: a model, optimiser or observables

14 /19




l Let’s look at the code

P

©
[

(=R wRN RN N N

) gmli_bcd_lab  Pubic

9 Unpin

Add file - <> Code ~

66aefbs - 2 days ago @ 5 Commits

<& Watch 0

main ~ ¥ 1Branch © 0Tags Q, Goto file t

ironfrown BCD v9.14

dev BCD V9.14 2 days ago
examples BCD V9.14 2 days ago
runs BCD Vv9.14 2 days ago
utils BCD Vv9.14 2 days ago
.gitignore Initial commit 5 days ago
LICENSE Initial commit 5 days ago
README.md Update README 4 days ago
README  &f8 GPL-3.0 license 7 =

Quantum Machine Learning B-C-D in Qiskit

« Author: Jacob Cybulski (LinkedIn), Enquanted

« Associated with: QPoland

« Aims: This is a workshop session introducing quantum machine learning for those already familiar with
Quantum Computing algorithms and Qiskit.

« Prerequisites: This GitHub assumes good knowledge of quantum computing and machines learning, as
well as previous experience with Python and Qiskit.

« Description: This QML BCD lab explores the process of developing a simple quantum machine learning
model in Qiskit.
The lab includes a practical session that covers the QML concepts, models, and techniques.
The initial lab tasks will be demonstrated by the presenter.
The following tasks are designed to be completed by the participants and discussed on Discord.

- Y Foko0o -~ % star 0 |~

About &

This is a workshop session introducing
quantum machine learning for those
already familiar with Quantum
Computing algorithms and Qiskit.
Readme

GPL-3.0 license

Activity

0 stars

0 watching

< @0 % < w8

0 forks

Releases

No releases published
Create a new release

Packages
No packages published

Publish your first package

Languages

® Jupyter Notebook 99.5%
® Python 0.5%

Suggested workflows
Based on your tech stack

@ Python package

Configure

Create and test a Python package on
multiple Python versions.

Resources for this session, see:
ironfrown (Jacob L. Cybulski, Enquanted)
https://github.com/ironfrown/gml_bcd_lab


https://github.com/ironfrown/qml_bcd_lab
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Quantum model performance:

Best "serial" PQFT model (q1, 19): Function fit (inst #3 @ epoch #55, min MSE=0.0131)

-0~ Train data

—O— Train fit (R2=0.7855, MAE=0.1128, MSE=0.0165)

1.0 Test data —C— Test fit (R2=0.5933, MAE=0.0980, MSE=0.0131) Best
- - model’s fit
Scoring a quantum model (different example) _
(in test)
Quantum model training relies on the training data and a loss function to guide the
optimiser, e.g. L2Loss (MSE cost), however, other performance metrics may also be
needed, e.g. MSE, MAE or R?, calculated for training, validation and test data.
Therefore, at each optimisation step, the model parameters are saved for later use.
These parameters values can be assigned to the weights of the model circuit, which can
then be scored using all data partitions, against the expected values (figure bottom-left). Medon st POFT model . ) Funcen L (n5.42.0 epoch #53, min MSE=0.01%%)
o . L . O] 5 s o Tttt Want9, WAE=0 1209 WSECO016%) ;
However, as a quantum model performance is highly sensitive to its initialisation, it is also Medlan
advisable to run multiple, differently initialised, instances of the same model. Subsequently (in test)
we can analyse a distribution of their performance results, e.g. here we present 5 instances )
of the same model with identical configurations (figure bottom-middle).
When doing so, it is also possible to present the level of model’s fit to data, depending on it W
best, median or worst instance performance (figures right).
In doing so, our performance assessment can be reported in honest and unbiased way.
Model performance (data="sin_n100", g3, 14) (sm.emt=0.80, iter# 121) Model "serial" (q1, 19): Mean instance performance (sm.emt: 0.4) Worst "serial" PQFT model (q1, 19): Function fit (inst #1 @ epoch #13, min MSE=0.1102)
T oo ot s s e i e ' Worst
Mean Absolute Error (MAE) model’s fit
Mean Square Error (MSE) ' for 5 model instances e (in test)
for a single model el on both training 3 o
and both training 2l | and test data £ o
and test data :
wl T etumte O Tt (Ve asss WE—0a700 et 1301

Iteration Iterations

Range (over 100 samples)
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Quantum computing with Qiskit
Ali Javadi-Abhari,' Matthew Treinish,' Kevin Krsulich,' Christopher J. Wood,! Jake Lishman,? Julien Gacon,*

mon Martiel,! Paul D. Nation,! Lev S. Bishop,' Andrew W. Cross," Blake R. Johnson,! and Jay M. Gambetta'
HIBM Quantum, IBM T.J. Walsor Research Center, Yorkioun Heights, NY, 10508

- - -
I 2IBM Quantum, IBM Rescarch Europe, Hursley, United Kingdom
0 n M Wlt h I S k It SIBM Quantuwin, IBM Research Europe, Ziivich, Suitzerland
YIBM Quantum, IBM France Lab, Orsay, France

We describe Qiskit.
ke design decisions that have shaped its development, and examine the software architecture and
its core components. We demonstrate an end-to-end workflow for solving a problem in condensed
matter physics on a quantum computer that serves to highlight some of Qiskit's capabilities, for
Quantum Science and Technology example the representation and optimization of circuits at various abstraction levels, its scalability

and retargetability to new gates, and the use of quantum-classical computations via dynamic circuits.
e discuss some of the ecosystem of tools and plugins that extend Qiskit for various tasks,
and the future ahead

software development kit for quantum information science. We discuss the

I INTRODUCTION I DESIGN PHILOSOPHY

Quantum computing is progressing at a rapid pace, We begin by discussing Qiskit’s scope within the
and robust software tools such as Qiskit are becoming in-  broader quantim computing software stack, as illus-
creasingly important as a means of facilitating research,  trated in Figure 1. Starting from a computational prob-
education, and to run computationally interesting prob- lem, a quantum algorithm specifies how the problem
amnle Qiskit was  may be solved with quantum cirenits. This step in-

© of utility  velves translating the classical problem to the quantum

°
Qiskit Machine Learning: an open-source library for quantum machine learning 5.1 DU domain, for example Fermion to qubit mapping [31, 62]
5 N ult-tolerant  Circuits at this level can be quite abstract, for example
tasks at scale on hardware and classical Gty [12] N Tulte & oy
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only specifying a set of Pauli rotations, some unitaries

N S | Bdoardo Al Lo e N o i jmprised of  or other high-level mathematical operators. Importantly,
AL Emre Sabin 0. Edoardo Altamura ©,' Oscar Wallis©,! Stephen P. Wood 2.2 Auton Dekusar \eling gates  theue abstract circuits are representable in Qiskit, which

° Y . . e 5 Ata 5 Seu e n D
Deddsn A. Millar @, Takoshi Imamichi®,* Atmushi Matuo®, Stefano Mensa and Code contributors U101 1041, contains synthesis methods to generate concrete eircuits

The Hartree Centre, STFC, Sci-Tech Daresbury, Warrington, WA{ AD, United Kingdom - ool from them. Such concrete cireuits are formed using a

*IBM Quantum, IBM T.J. Watson Rescarch Center, Yorktown Heights, NY 10595, USA roe toolbox tard library of gates, sepresentable using intemmedi

5181 \fter its ini.  Standard library of gates, representable v\»mg»;uhnmnr

M Quantum, 1BM Rescarch Europe - Dubli, Ireland
4 ; The pack. ot quantum languages such as OpenQASM [31]

3

YIBM Rescarch

. . UK
From qubits to algorithms, embark on the PIBM Quantum, (B Resarch | Tolgo, Ty 1035510, Japan At a current The transpiler rewrites cirenits in multiple rounds of
uvantum computing journey shaping our future ated: Fday ne. 202 s have con-  passes, in order to optimize and translate it to the target
q! P! g ) Y pPing We present Qiskit Machine Learning (ML), a high-level Python library that combines elements ty of whom  instruction set architecture (ISA). The word “transpiler
with trad i

of quantum comput ditional machine learning. The API abstracts Qiskit's primitives the Python s used within Qiskit to emphasize its nature as a circuit-
- to facilitate interactions with classical simulators and quantum hardware. Qiskit ML started as ell as b to-circuit rewsiting tool, distinct from a ful compilation
)  proof-of-concept code in 2019 and has since been developed to be a modular, intuitive tool for P
a non-specialist users while allowing extensiblity and finetuning controls for quanturn computational 4l More  down to controller binaries which is necessay for execut-
< Seientists and developers. The library is available as & public, opensource tool and is distributed r have used ing circuits, But the transpiler can also be thought of as
N under the Apache version 2.0 license. »d Qiskit in  an optimizing compiler for quantum programs.
. fnl is the most The ISA is the key abstraction layer separating the
Second Edition 3 Vo). B IS kb the ey abstraction Jayer b i
I INTRODUCTION state-of-the-art classical simulators and models of emu- hardware from the software, and depends heavily on the
Tated hardware nojse from near-tonn devieos, Morcover,  © milestone.  quantum computer architecture beneath. For example

it is designed to be modular and extensible, making the  ign philoso-  for a physical quantum computer based on superconduct-
addition of new quantum algorithms or building upon et dive into  ingqubits, this can include CNOT, v/X and RZ(6) rotations.
1 quantum computer, it can include joint Pauli

The convergence of quantum computing and machine
learning promises a pr in both research N
‘. Quantum machine learning (QML) lover.  xisting ones straightforward. Supported by extensive ch form its  For a logi

and indust A

ages the principles of quantum mechazics to potentially  educational resources and tutorials, Qiskit ML stands capabilities  measurements, magic state distillation, or other oper-
H Springer enhance or accelerate classical machine learning algo- At the forefront of QML research, helping students. sci-  Jamiltonian  ations specific to the error correcting code [25]. Note
- rithms, opening new frontiers in fields ranging from  entists and developers worldwide investigate the appli- | a quantum  that the ISA is often more than just a mniversal set of

materials scicnee to finance. As the field of QML ma-  cations of quantum computing for machine learning. be leveraged  quantum gates, and can include measure, reset or de-

tures, there is a growing need for accessible and powerful Sing a vari  lay operations, or cla
software tools that bridge the gap between theoretical
QML algorithms and their practical implementation on
emerging quantum hardware and simulators.

Qiskit Machine Learning (ML)!, an open-source mod-
ule within the Qiskit framework (1], addresses this need

al control-flow such as if/else
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¥l by providing a compre friendly plat- o )00
~ form for exploring the exciting landscape of QML. Built l'fmﬁv fi‘#
~ on core Qiskit elements such as primitives £
= g of quantun
t quantum circuit design, simulation, and ex O et
9 . vy deliver cutting-edge QML algorithms. Users can “m‘“'":m
A Practical Guide to S imeat with quantum enhancements tostablished meth S2e7P%
) ods, such as quantum kernels for Support Vector Ma- 1 85/
Quantum Machine Learnin Q1 Chins,or explore mew, fully auantum approaches, e 5200 5 5 4
. o a softwal 2.
g > tight integration with Python and reliance on widely (4T

used libraries like NumPy [2] and scikit-learn [3] make
it accessible to practitioners in diverse fields, from engi-
neering to the life sciences. It also includes a dedicated

The high-I¢
works (QN
and Regres

rX

and Quantum Optimization

d

API connector to PyTorch [4] for neural network-based ods for ]
sly bridging quantum cireuits with “L’:h‘":“' Prelude
Hands-on Approoch o Modern Quantum Algoithms e e S S et Ay 20 00 U
license, encotraging community participation and open * % 1 #24 Qiskit 2,2.1 s a small patch release that fixes several bugs identified in the 2.2.0 release.

Embeddy
ML predor
also interfy

collaboration. Moreover, it sets itself apart from other
platforms like PennyLane [5] in its approach to quantum
hardware usage. Specifically, Qiskit ML's architecture
works sucht-as-scumreercar -y o s .
is deliberately designed to handle quantum hardware B
. " libraries like NumPy, enabling a contimuous integration
o workloads, while also allowing experimentation with
ELIAS F. COMBARRO of classical and quantum machine learning techniques.
; _— Additionally, the models follow SciPy’s structural foun-
SAMUEL GONZALEZ-CASTILLO dation, and there is fanctionality for integrating neural
= stefano mensaistfe.ac.uk networks with PyTorch to support the design, training
2 © github.com /qiskit-community /qiskit-machine-learning and inference of hybrid quantum-classical models.

eword by Alberto Di Megio,
Head of Innovation - Coordinator CERN Quantum Technology Initiative




Any questions?

Available resources, see:
ironfrown (Jacob L. Cybulski, Enquanted)
https://github.com/ironfrown/gml_bcd_lab

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.


https://github.com/ironfrown/qml_bcd_lab

Dataset is to be prepared, cleaned and
partitioned for training and testing.

H H Data prepared for model training (“Two Sins®)
initial weights =

Training a simple

Qiskit estimator

input params observables
Qiskit Optimiser provides function
fit which executes a training loop, -
performing: a forward pass which weight params gradients

applies the model with its current
parameters to training data, /oss
function, and a backward pass R s e
to improve the model parameters. = PR i

Estimator creates the physical circuit
using the observables, input parameters
and weight parameters, and the gradient
method used in the calculation of
expectation values. It then executes the

meta-params _ Hilbert circuit by relying on a hardware specific
; fit Space estimator primitive. It returns the
o P calculated expectation values.
PQC Creator ‘ p
estimator
architecture primitive

Model training started training |Og

Regressor starts with the model’s Via the Optimiser

initial weights. It Ithe” passes thg Regressor invokes a  (Gaiiess) © Tiers: 50 / 300, Cost: 0. 102605
current parameter values (inputs an callback function to lo (60:00:14) - Iter#: 180 / 500, Cost: .126066

i ; ; Regressor uncti 9 .00 : :
weights) to the Estimator and receives the current weights (50:06.28) - Tters. 200 7 360, Cost. o o315
back the observed expectation values and cost (60:00:36) - Tter#: 256 / 560, Cost: 0.038513
d thei di hich b d Parameter : (00:00:43) - Iter#: 306 / 500, Cost: 0.033054
and their gradients, which can be use S (00:00:50) - Iter#: 350 / 500, Cost: 8.029146
imi i (99:00:58) - Iter#: 480 / 500, Cost: ©.027865
by an optimiser to define the overall pace (00:01:05) - Iter#: 456 / 500, Cost: 0.026759

cost landscape and determine the next | loss function

step in the circuit weights optimisation.

Total time 00:01:12, min Cost=0.026013
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