

Quantum tech overview Quantum machines Quantum applications Quantum tech in Australia and the World Qubits, circuits and gates Pure and hybrid quantum solutions QML training of quantum models QC/QML development platforms QML development process Business value of quantum tech How to get into quantum tech Recommended reading Summary and questions

Business Value of Quantum Technology

Harnessing quantum technology to advance business

Jacob L. Cybulski Enquanted, Australia

Creative Commons CC BY-NC-ND

Quantum graphs with community detection

What is **Quantum Technology**

Quantum computing and **Ouantum information science**

study of the information processing tasks that can be accomplished using quantum mechanical systems (Nielsen and Chuang, 2010)

0.4

0.6

-0.1

 $R_{V}(-6.2)$

ATLAS EXPERIMENT ent: 4144227629

Quantum mechanics

area of science dealing with the behaviour of matter and light on the atomic and subatomic scale (Britannica.com, 2020)

> CERN Atlas particle detector Large Hadron Collider

There are other quantum technologies e.g. quantum sensing

IBM superconducting quantum machine (127 qubits on cloud)

Quantum engineering building quantum devices

Recently in the news ...

Quantum Machines

Univ of Sci and Tech of China with Shanghai Inst of Microsystem and Info Tech (*Jiuzhang 3* - Photonic)

Again achieved quantum supremacy Gaussian Boson Sampling

SpinO

(N. Magnetic Resonance)

D-Wave (Quantum Annealing)

PASQAL (Neutral Atoms)

Quantum Brilliance (Diamond)

Google (Superconducting)

They all use:

Qubits the fundamental models of quantum information and its processing

Quantum circuits models of computation, involving qubits and operations on them

Xanadu (Photonic)

IBM (Superconducting)

Three Selected Applications

- Chemistry
- Company: IQM and Volkswagen, 2024
- **Platform:** IQM with hybrid quantumclassical QC-AFQMC algorithm
- Aim: to develop advanced battery materials to increase their efficiency for use in electric vehicles.
- **Results:** Achieved accurate simulation of critical chemical reactions involving battery chemicals, i.e. ethylene carbonate molecules and lithium ions.

- Pharmaceutical
- Company: IBM and partners, 2023
- Platform: IBM Quantum
- Aims: to design and discover new precision medicines based on spatial single-cell technologies to precisely understand the interactions between disease cells and therapies.
- Results: Several quantum methods have been developed and tested by IBM and partners to support cell engineering for immunotherapy, modelling tumour microenvironments, inferring single-cell drug perturbations, and bio-topology for cellular behaviour.

For more recent examples, see: Olivier Ezratty, 2024. Understanding Quantum Technologies, 7th ed. Le Lab Quantique. URL: https://www.oezratty.net/

• Finance

- Company: Accenture, 2021
- **Platform:** D-Wave quantum machine with Leap, via AWS Braket
- **Aim:** to minimise the difference between the target and the final portfolio while maximising the return, using data from Yahoo Finance.
- **Results:** Working portfolio rebalancing system.

The wheel of Quantum applications

Organisations & Society

•	NSW			1							
	 Silicon Quantum Computing (Quantum engineering) 		USA	_							
	 O-CTRL (Quantum computing and sensing) 	EU +	· member states	EU	Germany	France Neth					
	 Diraq (Quantum engineering) 	Selected		-							
	 Archer (Quantum engineering and sensing) 	organisations	China			T I	T I	In charles (IDM			
	 h-Bar (Quantum consulting) 			-				Google, Microsoft,			
	- Sydney Quantum Academy		Canada					Intel, AWS, and			
	- University of Sydney: Quantum Australia	lu da		-		public	industry	startups funding.			
	– Qualitum Science Group at Syuney / Syuney Nanoscience H	iuu with partners) /	UK			funding	funding				
	frm Macquarie University Research Centre in Quantum Scier	and Technology	Australia								
	 UNSW: Fundamental Quantum Technologies Lab / COC2T 	lee and reenhology	Australia								
	- UTS: Centre for Quantum Software and Information / CQC2T	г	India		inc PsiO	ludes					
			india	_	in B	risbane					
•	Australian Capital Territory (Canberra)		South Korea								
	 Quantum Brilliance (Quantum engineering) 			-							
	 QuintessenceLabs (Quantum cybersecurity) 	Business funded	Russia			Ouar	ntum R&D	investment			
	 NOMAD (Quantum sensing) ANU: Quantum ontice group / COC2T 	Government funded		-			in the M	orld			
	ANO. Quantum optics group / CQC21		Japan					onu			
•	Oueensland					source: Oli	vier Ezratty compil	ation, June 2024, on a 5			
	 PsiQuantum Australia (Quantum engineering) 		Israel			year pe	eriod, past, present	or future spending			
	 Quantum Australia Growth Centre 		Singanoro			depe	nding on the coun	try. Euro/\$ parity.			
	 University of Queensland: CoE for Eng Quantum Systems (w 	vith PsiQuantum) / CQC2T	Jingapore	_							
	 Griffith: Centre for Quantum Dynamics / CQC2T 		\$M	0 2	.000 40	00 6000	8000 1	0000 12000			
•	Victoria										
	 Enguanted (Quantum applications and consulting) 					— ———————————————————————————————————	0 0004 11-1-	unter a l'ann Oranataan			
	 Enquanted (Quantum applications and consump) Melbourne Quantum Academy (forming) Technologies, Seventh, ed. La Lab Quantum Academy (forming) 							rstanding Quantum			
- University of Melbourne: IBM Quantum Hub (with IBM Quantum) / COC2T						s, Sevenin. eu.	Le Las Quantique.				
	- Swinburne University of Technology: Swinburne Quantum Te	Swinburne University of Technology: Swinburne Quantum Technology Centre (with Inflegtion, frm ColdQuanta)									
	- RMIT: Quantum Photonics Lab / Research Hub for Diamond	Quantum Materials (with 0	QB+LTU) / CQ	C2T		technology-ai	nd-innovation/te	chnology/guantum			
	 Deakin University: Quantum IT / Distributed Quantum Compt 	uting (with CISCO)				37		55 1			
	 Monash University: Quantum error correction / Quantum sense 	sors (with QB + L3Harris)									
•	South Australia						Natio	nal Collaboration			
	- QuantX Labs (Quantum sensing)						Australian	Ouantum Alliance			
	 University of Adelaide: Centre for Ouantum Materials and Ou 	antum Technologies	ARC	Centre of	f Excellend	e for Enaine	ered Ouantur	Systems (EOUS)			
				AR	C Centre	of Excellence	e for Quantum	Computation and			
•	Western Australia					Comr	nunication Tec	chnology (CQC2T)			
	- University of Western Australia: QISA (Quantum Information,	Simulation and Algorithms	s) Research C	entre	Au	ıstralian Qua	ntum Software	e Network (AQSN)			

Qubits

in scientific terms

In practice qubits involve *elementary particles*, such as *ions*, *photons*, single *atoms*, *electrons*, even *defects in diamonds*; and, their behaviour is governed by Physics (Nature / Universe)

A qubit *represents a state* of such a particle, e.g. an electron spin, which can be <u>up</u> or <u>down</u>, (written formally as $|\uparrow\rangle$ and $|\downarrow\rangle$ or $|0\rangle$ and $|1\rangle$), which are called the *basis states*

It is possible to change the state of a qubit with certain predetermined *operations*, such as rotation or reversing the position of the qubit state

Afterwards, the qubit is in a state of *superposition*, or a combination, of its basis states <u>up</u> and <u>down</u>

The superposition state is the actual state of elementary particles, not its math description

It is impossible to determine the qubit's state without its *measurement*

Qubit measurement returns only the basis state that is "likely" to be closest to its superposition state, which also destroys the qubit state

The outcome of measurement is precise but probabilistic

Qubits can be *entangled*, then they start behaving as a unit with a common complex state, until they are measured or until some external factor (*noise*) destroys their entanglement

What makes quantum computers special?

Qubit *superposition* (parallel choices) and *entanglement* (exponential combination of choices and their filtering), as well as *measurement* (collapse of choices and randomness), is what gives quantum computers their immense computational power allowing some problems to be solved in minutes rather than 1000s of years!

Quantum Algorithms / Models Parameterised Circuit Templates

- Quantum algorithms are conveniently represented by quantum circuits, which map inputs into outputs, and consist of: *qubits* (or registers) + *operations* (or gates) + *measurements*.
- Circuits are static with all data and operations hard-coded.
- Circuit execution on a quantum machine or a simulator returns a "random" result from a precisely defined statistical distribution.
- When we execute the same circuit multiple times, we need to study distribution of possible results to gain insights.
- When we alter the circuit data, operations, their parameters, or ways to measure the circuit, we need to create a new circuit.
- So we use parameterised circuit "templates" for model training.

- A quantum circuit describes changes to the quantum model's state, and typically consists of three components:
 - a feature map encoding classical input data and preparing the circuit's quantum state
 - an ansatz responsible for quantum state changes, via multi-qubit operations (entanglements + rotations)

- measurements determining the circuit's quantum state, which can then be interpreted as classical output
- To identify the best quantum model for a sample data, we train its parameters, which relies on pure quantum or hybrid quantum-classical (variational) optimisation.

outputs are measured as classical 0 or 1, then interpreted

Variational Quantum Algorithm

A typical VQA process

The ansatz parameters are initialised to some values, e.g. zero or random

The feature map parameters are bound to the new input data -

The parameter values are used to create a new circuit

The circuit is executed

The circuit quantum state is then measured

Cost function is applied to measurement results and expected values

The cost of difference is calculated

Based on the difference and previous parameters the new parameters values are proposed

anadona yaanaan / ige

VQA is an *iterative process* VQA uses *cost/loss function* and *optimiser* VQA has *difficulties*:

- The problem at hand
- Large circuits with many parameters
- Complex measurement strategy
- Unsupervised learning
- Emergence of barren plateaus

QC platforms / SDKs Qiskit, PennyLane, Cirq, Yao, ...

- Qiskit (OS)
 - Location: USA
 - Language: Python
 - Company: IBM Research
 - **Backends:** IBM, AQT, IQM, Rigetti, Quantinuum
 - Models: VQC, VQR, QNN, QCNN, QSVM, QGAN, Q Kernels, VQE, VQLS, QFT, QAOA
 - → ML SDK: Scipy, PyTorch, Tensorflow
 - Apps: QML, Finance, Optimization, Nature
- Cirq (OS)
 - Location: USA
 - Language: Python
 - → Company: Google Quantum AI
 - → Backends: Google, AQT, IonQ, Pasqal, Rigetti
 - Models: VQE, QAOA, via TF Quantum (QNN, QCNN, QRNN, QGNN, QGAN, QRL, Q kernels)
 - → ML SDK: PyTorch, Tensorflow
 - → Apps: QML, Chem, Materials, Comms, Metrology

Other Platforms / Q-SDKs

Classiq / Classiq, Forest / Rigetti, Ocean / D-Wave, Quantum Development Kit with Q# / Microsoft, cuQuantum / Nvidia, t|ket> / CQC, Qrystal / Quantum Brilliance, ...

- PennyLane (OS)
 - Location: Canada
 - Language: Python
 - Company: Xanadu
 - → Backends: Xanadu, AQT, IonQ, Rigetti, Honeywell
 - → Models: QNN, Q Kernels, QFT, QAOA
 - → ML SDK: PyTorch, Tensorflow
 - Apps: QML. Optimization, Chemistry
- **Yao** (OS)
 - Location: China / Taiwan
 - Language: Julia
 - → Company: QuantumBFS
 - → Backends: Simulators, via Python
 - → Models: VQE, many others via Julia (Flux)
 - → ML SDK: via Julia/Python (scipy, sklearn, Tensorflow)
 - Apps: Via Julia (QML, AI, Optimization, Physics, Chemistry, Biology, Earth, Finance, Robotics)

Model training started

	0	(000024	sec):	Loss	0.2452	R2	-3.029
	7	(000189	sec):	Loss	0.0971	R2	-0.596
	14	(000354	sec):	Loss	0.0596	R2	0.0204
	21	(000519	sec):	Loss	0.0499	R2	0.1802
1	28	(000684	sec):	Loss	0.0455	R2	0.2517
3	35	(000848	sec):	Loss	0.0421	R2	0.3077
4	42	(001013	sec):	Loss	0.0404	R2	0.3354
4	19	(001178	sec):	Loss	0.0388	R2	0.3618
5	56	(001343	sec):	Loss	0.0385	R2	0.3669
6	53	(001507	sec):	Loss	0.0371	R2	0.3904
	70	(001671	sec):	Loss	0.0359	R2	0.4102
	77	(001835	sec):	Loss	0.0347	R2	0.4293
8	34	(002000	sec):	Loss	0.0349	R2	0.4261
ç	91	(002164	sec):	Loss	0.0343	R2	0.4368
9	98	(002329	sec):	Loss	0.0329	R2	0.4586
10	95	(002493	sec):	Loss	0.0324	R2	0.4673
13	12	(002657	sec):	Loss	0.0333	R2	0.4525
1	19	(002822	sec):	Loss	0.0313	R2	0.4859
12	26	(002986	sec):	Loss	0.0312	R2	0.4870
13	33	(003151	sec):	Loss	0.0316	R2	0.4811
14	40	(003315	sec):	Loss	0.0321	R2	0.4727
14	47	(003479	sec):	Loss	0.0308	R2	0.4935

Total training time: 3526s (00:58:46)

Small example: Estimate diabetes progression one year after baseline

devices = cpu + lightning.qubit samples = 296, features = 5, params = 75, epochs = 150 training: cost = 0.0306 @ 0141, r2 = 0.4977 @ 0141 testing: cost = 0.0309 @ 0148, r2 = 0.3891 @ 0148 elapsed time = 3526sec (00:58:46)

Quantum Autoencoder Time Series Analysis with Noise Removal

One of Jacob's projects is development of complex quantum models (both pure and hybrid), for time series and signal analysis. The models can reduce noise, analyse and forecast temporal data, and detect complex anomaly patterns.

Potential applications and data sets include: machine condition (vibration) monitoring, astronomical observations, marketing and sales, earthquake prediction, EEG or ECG analysis, etc.

rotation

block

Rot (0.44, 0.68, 0.05)

Rot (0.82, 0.92, 0.31)

Rot (0.85, 0.89, 0.94)

Rot (0.33, 0.85, 0.23)

Rot (0.46, 0.84, 0.93)

Rot (0.56, 0.45, 0.23)

Full-OAE Input+Encoder

entangling

block

ansatz laver

hvbrid latent

space

latent qubits

rash qubits

classical

ansatz layer

Simple problems can be solved with pure quantum methods Complex problems require hybrid quantum-classical methods

ansatz laver

classical

layer (PyTorch)

Hybrid quantum QAE TSA model for noise reduction

rotation

block

(0.94 0.70,

Rot (0.16, 0.83,

Rot (0.29, 0.46, 0.33)

input

block

entangling

block

ansatz layer

From the lab to the world?

a story of a quantum model development for TS analysis: predicting sales of beer in USA with QML

Not so fast and not so simple!

Pros and Cons of QT, QC, QML, QO, ...

OT has huge potential and its applications are extremely promising! OT is still in its early stage of research and development.

Benefits vs. Challenges

QT is beautiful, as it seamlessly integrates algorithms, maths and physical phenomena

QT offers "massive parallelism" (via superposition) and "randomness" (via measurement)

Ouantum algorithms can sometimes demonstrate improvement over similar classical algorithms

There is a lot of free QT learning resources, tutorials, communities, challenges and hackathons

> There has been a recent upheaval in guantum education and training of QT skills

QT community often displays a "hacker culture", which lacks of generating breakthrough applications discipline of testability, repeatability and quality of results

QT harnesses quantum processes at sub-atomic level to enable very efficient computational tasks

There are charlatans hijacking quantum concepts and applying them to non-quantum phenomena, e.g. body, mind and soul

QT is difficult, as it is hard to conceptualise, design, develop, execute its solutions, and even understand their results

To produce a solution, QT must remove unlikely alternatives and amplify more promising alternatives (via entanglement)

Quantum advantage can only be demonstrated in niche application areas

There is still an acute shortage of knowledge, skills and expertise in understanding and developing OT solutions

OT is very complex, so a true OT expertise is still very rare, also, there is the lack of QT dev tools for non-experts

Exercise in finding QT business value

In 5 mins, identify 2+1 examples of the potential business gain from investment in, application of, or changes to quantum technology, justify

ducated Juesses Juesses two hypotheticals from the mainstream of business activity + one which is a creative quantum tech business idea

Discuss it with your colleague in 5 mins

Example (think how to explain / justify them)

- Use QT to determine if a new drug ingredient could destroy AIDS virus
 Use QT to strengthen a stock portfolio with stock-index futures
 - 3. Place a quantum computer in deep space to save on cooling costs

Getting into Quantum Tech

You can contribute to the quantum field in many different ways, e.g.

- Work on new QT hardware
- Develop new QT algorithms
- Develop new QT software
- Create new UI to QT tools
- Develop new QT applications
- Specialise in a QT area
- Teach / promote QT
- Work in QT recruitment
- Manage a QT team ...

The most important trait of people in quantum tech is their enthusiasm and commitment

	Skill/Knowledge	Naive	Basic	Medium	Advanced	Expert
Domain		Experiments with quantum concepts	Writes simple quantum programs	Takes part in quantum challenges	Has a technical job in quantum technology	Other people in quantum think they are super
Domain	Complex Numbers		./	.1.1		.1.1
	Linear Algebra		v v	<u></u>	<u></u>	<u></u>
	Calculus		•			<u></u>
	Differential Equations					
Mathematics	Partial Differential Egs					~~
	Fourier Transforms					v .
	Probability Theory	×	~	<u></u>		~
	Statistics	v	v			~~
			-	-		
	Programming (Python)		~	~~	~~	~~
Data	Optimisation Techniques			~~	~~	~~
Science	Machine Learning			~~	~~	~~
	-	-				
	Foundations (Bell State)	~	~	~~	~~~	~~~
	Circuits, Qubits, Gates, Bloch Sphere	~	~	~~	~~~	~~~
Ouromture	Quantum Circuit Simulators	~	~	~	~~	~~
Computing	Circuit Execution	v	~	~~	~~~	~~~
company	Results Interpretation / Visualisation	~	~	~~	~~~	~~~
	Algorithms (Grover, Shor,)		~	~~	~~~	~~~
	Simple Error Mitigation		~	~~	~~~	~~~
	Variational Quantum Algorithms			~	~~	~~~
	Data Encoding			~	~~	~~~
	Result Interpretation			~	~~	~~~
Quantum	Quantum Optimisation			~	~~	~~~
Machine	Quantum Linear Models			~	~~	~~~
Learning	Quantum Neural Networks			~	~~	~~~
	Quantum Kernel Methods			 	~~	~~~
	Quantum Probabilistic Models				v	~~
	Quantum Annealing				v	~~
Ouantum	Configuration				~	~~
Hardware	Calibration			~		~~
	Complex Error Mitigation			~	~	~~

Ready to dive into QT? \rightarrow QC, Quantum Maths, QML and QO

3. Understand some mathematics needed to master quantum computing

(packt)

A Practical Guide to

FLÍAS E. COMBARBO

SAMUEL GONZÁLEZ-CASTILLO

Quantum Machine Learning and Quantum Optimization

Hands-on Approach to Modern Quantum Algorithms

Essential Mathematics for Quantum Computing

EXPERT INSIGHT Leonard S. Woody III

Dancing with **Qubits**

From qubits to algorithms, embark on the avantum computing journey shaping our future

Second Edition

Robert S. Sutor

4. Only then move to more advanced topics and theory, some you would have already glimpsed, e.g. OML and OO

Understanding **Quantum Technologies**

1. Develop some intuition about quantum technology

> Seventh edition - 2024 Olivier Ezratty

2. Get your hands dirty by using some readily available quantum simulators and machines

EXPERT INSIGHT Learn

with Python

Second Edition

Robert Loredo

Quantum Computing

Packt>

and IBM Quantum

Write your own practical quantum programs

with Python

QUANTUM

UANTUM COMPUTING TO HARGE YOUR BUSINESS

BRIAN T. LENAHAN

Thank you!

Any questions?

This presentation has been released under the Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator. NC: Only noncommercial uses of the work are permitted. ND: No derivatives or adaptations of the work are permitted.

Photos from Unsplash

Enquanted is being somewhere in-between Enchanted and Entangled