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Quantum Time Series Autoencoder
QuTSAE: wordplay on the Hopi notion of qatsi = life

Autoencoders (AE) are ML models able to 
to compress input into its essential 
features and then recover the original info

They lose the infrequent or insignificant 
info, such as anomalies and noise

Used for data denoising and anomaly 
detection, e.g. in images and signals

There are few applications of QML methods 
to time-series analysis, QAE even fewer

QuTSAEs have the potential to deal with 
complex noise and anomaly patterns

Training of QuTSAEs is difficult, due to:
● Many features 

(lots of qubits and/or parameters)
● Complex measurement strategies
● Unsupervised learning

(we do not know what is noise)
● Possibility of barren plateaus
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Model training by presenting pairs of noisy and pure TS sequences

Optimizationof ansatzeparametersTypical QuTSAE 
architecture

In QuTSAE development, the key concerns include:
overall model architecture, data encoding and decoding, 
ansatz design and its parameters optimisation strategy
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Replicating Half-QAE / single stage (pure data only)

We can train a pure QAE by training 
its half by converging trash info to 
zero, the other half is its inverse.

We can train a noisy half-QAE by 
stacking it with a pure half-QAE 

We can also side-train a noisy 
half-QAE by converging its latent 
space to a pretrained pure half-QAE
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Approximating or Denoising Stacked half-QAEs /two stages (pure+noisy data)
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Denoising with half-QAE Sidekick / two stages (pure+noisy data)
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Merriam-Webster Dictionary (acc 3 March, 2024):Someone’s sidekick is a person closely associated with another as a subordinate or partner

A novel approach to QuTSAE training(exclusive preview)
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Input encoding and output decoding 
for QuTSAE processing

In general, QuTSAE input and output is a 
collection of real values (floats)

There are many different quantum data 
encoding / state preparation methods, e.g.

● basis encoding, with qubits acting as 
bits in the encoded number (logical / int) 
to be processed later in the circuit

● amplitude encoding, where each data 
point is encoded as expectation value 
of multi-qubit measurement (int / float)

● QRAM encoding, where possible inputs are 
pre-coded in a circuit, and used by ref

● angle encoding, where qubit rotation 
(float) represents the value of data

● Our experiments used angle encoding 
relative to |+⟩ state with values ∊ [-1, 1]
coded as rotations up (<0) or down (≥0)

Output decoding relies on the interpretation 
of the model measurement, which is linked 
to the cost function and its use. 

In QuTSAE to determine the angular state of 
individual qubits for model training and 
testing, we can use:

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.  

http://link.springer.com/book/10.1007/978-3-030-83098-4.

Note similarities
between input 

encoding and output 
decoding
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● Swap test to compare the state of the 
selected qubits to the initial (zero) state 
of unused qubits

● Measurement and calculation, which 
could rely on the probability (count) 
distribution of expectation values, 
followed by calculation of conditional 
probabilities of each qubit’s state, from 
which it is possible to derive the angular 
state of each qubit.
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Anatomy of a QuTSAE Ansatz
QAE encoder and decoder

QuTSAE encoder and decoder are often 
symmetric (although this is not necessary)

They are parametrized circuits (ansatze), 
arranged into layers of trainable rotation 
blocks and entangling blocks

Ansatze may be of a different size than 
the requirements of input/output blocks

The selection of the optimizer of ansatze parameters requires 
some preliminary investigation of their effectiveness

This depends on the model architecture, ansatz design, data 
encoding and decoding, as well as the nature of training data

In our project we evaluated gradient based optimizers (ADAM 
and SPSA) as well as linear and non-linear approximation 
methods (such as COBYLA and BFGS) – COBYLA was adopted
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  6 / 12

Experiments
with Denoising QuTSAE

Subsequently, a series of over 60 (Qiskit) 
experiments were conducted to determine 
the optimum QuTSAE model characteristics

First, it was required to determine the time-
series window size, which implied the size of 
QuTSAE model input and output blocks

Then three circuit parameters were varied, 
i.e. the size of latent (and trash) space, the 
number of additional qubits required by 
ansatze, and the type and number of 
rotational (y and xy) / entangling layers

The optimum model parameters were 
selected based on the model validation 
scores (MAE)

The best QuTSAE model’s performance was 
comparable to (but not better than) the best 
equivalent classical model (14 additional 
experiments with PyTorch models)

Qiskit state vector simulator
Best quantum model (7, 3, 2)
Number of parameters: 180
Number of iterations: 2,000
Speed of model training: 15 mins

PyTorch
Equivalent classical model (7)
Number of parameters: 9,741
Number of iterations: 30,000
Speed of model training: 20 secs
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Summary

Research insights
● We have discussed design decisions 

taken in the development of denoising 
quantum time series autoencoders

● Input encoding strategy needs to consider 
the output decoding strategy, i.e. 
measurements and their interpretation

● Methods of measuring and interpreting 
model’s quantum state are essential for 
training and testing the model

● Ansatz architectural properties must fit 
the model function

● Ansatz circuit width, depth, the number of 
trainable parameters, as well as the 
required degree of freedom (extra qubits) 
determine the model performance

● All QuTSAE design choices impact its 
performance in training and validation

● QuTSAE models are not better but merely 
approach the performance of classical models

● The majority of insights derived from this study 
are applicable to the design of many other QML 
models

Future work
● Explore QML platforms that provide better 

support for VQA and models optimisation
● Introduce tighter integration between classical 

and quantum ML methods, which seem to 
result in better performing VQA models

Quantum model 
data fit (Qiskit)

Classical model 
data fit (PyTorch)

Beer Sales (IRI) Beer Sales (IRI)
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Preview of the current work
Improved optimisation of the model parameter space 

An approach adopted in the QuTSAE 
creation was to rely on the VQA 
development in Qiskit

One of the issues found to affect the 
QuTSAE training performance is:

● The lack of quantum model transparency 
which hampers the performance of 
classical optimizers

The currently pursued solution is to 
explore PennyLane / PyTorch ability to 
create hybrid models of well integrated 
quantum and classical components.

Such models’ parameters are arranged 
into a series of layers that can be taken 
advantage of during the optimisation 
process.

|0⟩|0⟩

LatentSpace

ImpliedTrashSpace

QuTSAEEncoder QuTSAEDecoder OutputGenerationInputPreparation

ClassicalLayers ClassicalLayersQuantumLayers QuantumLayers

ClassicalLayers

PennyLane/ PyTorchapproach to QuTSAE development

PennyLane / PyTorch Neural Networkof classical and quantum components
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Thank you!

Any questions?
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Appendix:
Concepts in TS Analysis

● Time series analysis aims to identify patterns in 
historical time data and to create forecasts of 
what data is likely to be collected in the future

● Applications include heart monitoring, weather 
forecasts, machine condition monitoring, etc.

● Times series analysis is well established with 
excellent tools and efficient methods, yet some 
organisations aim to improve them further

● Time series must have an unique index 
- a time-stamp sequencing the series

● Time series needs to be ordered by its index
● Time series will also have some 

time-dependent attributes to be modelled
● Time series can be univariate or multivariate, 

depending on whether a single or multiple 
attributes are being investigated

● Missing indeces and their dependent attributes 
may need to be imputed (e.g. interpolated)

● Index needs to be of appropriate granularity, 
e.g. years, months, weeks, days, hours, etc.

● Attributes need to be aggregated to the 
required index granularity

● Time signal often shows seasonality in data, 
i.e. a regular repeating pattern

● With aggregation and smoothing seasonality 
can be removed and trends visually identified

● Majority of forecasting methods require
time-series to be stationary, i.e. its mean, 
variance and auto-correlation are constant

● Quantum time series analysis (QTSA) is a 
promising approach to time series analysis and 
forecasting!

Sales of beer in USA
Mean not constant

Variance not constant

Non-linear trend
Visibly not stationary
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Appendix:
Measuring Quantum Circuits

There are many ways of obtaining the 
outcome of a circuit execution.

● We can select all qubits to measure
● We can select only those qubits that 

give you (theoretically) the most 
appropriate result

● We can interpret the counts of multiple 
measurements

● We can reinterpret circuit measurements 
into different combinations of outcomes, 
e.g. to predict larger QTSA horizons

or

or

Repeated circuit measurement can be interpreted as 
outcomes of different types, e.g. 

● as a binary outcome 
(e.g. a single qubit measurement), 

● as a bitwise representation of an integer number 
(e.g. most frequent combination of multi-qubit 
measurements), or 

● as a value of a continuous variable 
(e.g. expectation value of a specific outcome).

horizon 1

horizon 2

horizon 3

integer logical

float
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Appendix:
Quantum Neural Networks

● A typical QNN consists of two main 
components, i.e. a feature map and an 
ansatz (also called variational model)

● The feature encodes the input data and 
prepares the quantum system state, using as 
many features as there are qubits

● The ansatz consists of several layers and, 
similarly to a classical NN, is responsible for 
inter-linking the layers - this is accomplished 
by trainable Pauli rotation gates and 
entanglement blocks

● Finally, the qubit states are measured and 
interpreted as QNN output

● In contrast to function / data fitting, 
QNNs are able to perform pattern 
matching, i.e. work with a sequence of 
values themselves rather than with the 
mapping between an index and values

● In the following experiments, we will 
adopt a sliding window approach to 
structuring the time series

● However, the standard QNN model does 
not lean itself to time series analysis, i.e.

– You are limited to the TS window of size 
equal to the number of qubits

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. “The 
Power of Quantum Neural Networks.” Nature Computational Science 1, no. 6 (June 2021): 403–9. 

https://doi.org/10.1038/s43588-021-00084-1.

Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020. 
https://towardsdatascience.com/quantum-neural-networks-for-fintech-dddc6ac68dbf.

Feature Map Ansatz

Pattern
Matching

In Qiskit
VQR Model
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