
 1 / 19

Development of Quantum Autoencoders
Worst case scenario: denoising time-series and signals

Jacob L. Cybulski
Enquanted, Melbourne, Australia

Sebastian Zając
SGH Warsaw School of Economics, Warsaw, Poland

Introduction to QAEs
Denoising TS QAEs
Design choices
Architectural choices
Input encoding choices
Output / cost function choices
Encoder / decoder ansatze choices
Optimization / training choices
Qiskit vs PennyLane vs PyTorch
Summary of results
Conclusions and future work

The aims of this session:

To explore and understand
various design issues while
developing a complex
quantum autoencoder

5 October 2024, Washington DC Quantum Computing Meetup Creative Commons CC-BY

 2 / 19

Problem

Can quantum machine learning assist
detection of complex patterns in time series
and signals from the preceding data
sequences? How?

Sample applications include: machine
condition monitoring, astronomical
observations, nationwide marketing and
sales, earthquake prediction, EEG or ECG
analysis, etc.

Acknowledgements:
Gearbox and Vibration Analysis ML, 2023,

Nakkeeran, Kaggle.com
Gemini/GNIRS spectra, 2017,

NOIRLab, Wikimedia.
Bronnenberg, B.J., Kruger, M.W., Mela, C.F., 2008. Database

Paper —The IRI Marketing Data Set. Marketing Science 27,
745–748. https://doi.org/10.1287/mksc.1080.0450

Earthquake, Mag 7.3, East Coast of Honshu, Japan, 2011,
The Global Seismogram Viewer, http://ds.iris.edu/gsv

EEG of brain and heart action, 2012,
Otoomuch, Wikimedia.

Machine condition monitoring

Astronomical observations

EEG analysis

Earthquakes

Forecasting of
beer sales (USA)

all data are
temporal

all suffer from
noise and anomalies

all could
potentially lead to

catastrophic failures

 3 / 19

Problem: A hypothetical

A fragment of the US beer sales
of the selected beer brand

True weekly sales

Inaccurate weekly
projections aggregated from

manufacturers’ forecasts

Corrected forecasts
from inaccurate

projections

Question:
should we average
inaccurate forecasts or
should we try a model
based denoising of
forecast inaccuracies?

Another question:
what is normal and
what is abnormal?

The noise shown here is greatly
amplified and distorted to

create the worst case scenario
(noise of 10% was injected)

Super Bowl?

Qiskit
PennyLane
PyTorch

 4 / 19

Projects
• Quantum computing
• Quantum machine learning
• Quantum time series analysis

and anomaly detection
• Classical machine learning
• Data visualisation

Personal
• Recreational cycling
• Reading science and Sci-Fi
• Quantum challenges and

hackathons

Presenter
Jacob Cybulski
quantum@jacobcybulski.com

Founder
Researcher
Consultant

Author
at Enquanted

Melbourne
Australia

Research
collaboration and

supervision of
research students in

QC + QML

Collaborator:
Sebastian Zając

SGH Warsaw School
of Economics,

Warsaw, Poland

 5 / 19

Quantum Autoencoder (for Time Series)

Autoencoders (AE) are deep learning (DL)
models that compress input into its
essential features and then recover the
original information from them

AEs lose the infrequent, insignificant or
unwanted parts of information

They are used for data denoising and
anomaly detection, e.g. in images / signals

There are few applications of QML methods
to time-series analysis, TS applications of
quantum AE (QAE) are even fewer

QAEs have the potential to deal with highly
complex noise and anomaly patterns

Training of QAEs is difficult, due to:
● Potentially many features (e.g. TSs)

(lots of qubits and/or parameters)
● Complex measurement strategies
● Unsupervised learning

(we do not know what is noise)
● Possibility of barren plateaus

Q
A

E
D

ec
od

er

|0⟩|0⟩

Q
A

E
E

nc
od

er

LatentSpace

TrashSpace

EncodedTS Decoded - Measuredrecovered TS

ze
ro

Input sequence(e.g. noisy signal) Output sequence(e.g. noise-free signal)

Compressed sequence(e.g. signal essence)

Lost information(e.g. noise)
Trainableansatz Trainableansatz

Measurement

Model training by presenting pairs of noisy and pure TS sequences

Optimizationof ansatzeparametersTypical QAE
architecture

In QAE development, the key concerns include:
overall model architecture, data encoding and decoding,
ansatz design and its parameters optimisation strategy

 6 / 19

Input encoding / embedding
for QAE processing

In general, QAE input and output is an unrestricted
collection of real values (floats) – this guided our
selection of data encoding methods.

We rejected the following encoding methods:

Basis encoding, with qubits acting as
bits in the encoded number (logical / int)
to be processed later in the circuit.

QRAM encoding, where all possible inputs are
known in advance, pre-coded in a circuit, and
used by reference.

Angle encoding suits QAE design,
with input values represented as

qubit state rotations (float).

In our experiments we used
angle encoding relative to

|+⟩ state, with values ∊ [-1, 1]
scaled to arange [0, π], and coded
as rotations up (<0) or down (≥0).

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

http://link.springer.com/book/10.1007/978-3-030-83098-4.

x

z

|1⟩

|0⟩

[-1..0)

(0..+1]

Ry(-v)

Ry(+v)
y

[0]

Amplitude encoding is probably the least
understood, however, it is one of the most
useful encoding schemes - attractive for QAEs.

It embeds input as a circuit
state normally measured on
output, i.e. each data point
is encoded as expectation
value of multi-qubit
measurement (int / float).

The problem with this encoding
scheme is that for each unique
input value, the structure of
encoding gates is different.
The circuit is not differentiable,
which may be suitable for
simulators, but difficult to use
with GPUs and QPUs.

Example: data encoded as
ᴪ was normalised vector
[1/8, 2/8, 3/8, 2/8]. The
measurement reflects the
input data proportions.

 7 / 19

Measurement &
Interpretation

There are many ways of decoding the circuit
state to form classical output data, e.g. we can:

● measure all qubits
(as related to the global cost function)

● measure a selection of qubits
(as related to the local cost function)

● measure the circuit state in different ways
(e.g. as counts, expvals or probabilities)

● reinterpret circuit measurements
into different combinations of outcomes,
e.g. to predict larger TS horizons (future)

or

this or this?

Repeated circuit measurement can be interpreted as
outcomes of different numeric types, e.g. as a:

● binary outcome
(e.g. a single qubit measurement),

● bitwise representation of an integer number
(e.g. most frequent combination of multi-qubit
measurements), or

● value of a continuous variable
(e.g. expectation value of a specific outcome).

horizon 1

horizon 2

horizon 3

integer logical

float

global local

or in-between,
such as parity
interpretation

 8 / 19

Anatomy of QAE Ansatze
QAE encoder and decoder (Qiskit)

rotation
block

entangling
block

rotation
block

internal measurement /
initialisation block

rotation
block

input
block

output
block

entangling
block

entangling
block

entangling
block

la
te

nt
 q

ub
its

tr
as

h
qu

bi
ts

en
co

di
ng

qu
bi

ts
ex

tr
a

qu
bi

ts

m
ea

su
re

d
qu

bi
ts

ansatz layer ansatz layer ansatz layer ansatz layer

QAE encoder QAE decoder

QAE encoder and decoder are often
symmetric (as shown here)
They are parameterized circuits (ansatze),
arranged into layers of trainable rotation
and entangling blocks
Ansatze may be of a different size than
the requirements of input/output blocks

The selection of the optimizer of ansatze parameters requires
some preliminary investigation of their effectiveness
This depends on the model architecture, ansatz design, data
encoding and decoding, as well as the nature of training data
In our project we evaluated gradient based optimizers (ADAM
and SPSA) as well as linear and non-linear approximation
methods (such as COBYLA and BFGS) – COBYLA was adopted

Trash qubits are
being reset!

This model features mid-circuit measurement
which is not a unitary operation, hence it is not
differentiable and hard to optimise.

 9 / 19

Experiments
with QAE TS denoising (Qiskit)

Quantum model validation
data fit (Qiskit)

USA Beer Sales (IRI)

Classical model validation
data fit (PyTorch)

USA Beer Sales (IRI)

As the initial aim was to denoise TSs and use them
for forecasting, differencing was applied to data

A series of over 60 (Qiskit) experiments were
conducted to find the optimum QAE model

We determined the time series window size =
the size of QAE model input and output blocks

Then circuit parameters were varied, i.e. the size
of latent (and trash) space, the number of
additional qubits, and the number of parameters

The optimum model parameters were selected
based on the model validation scores (MAE)

The best QAE model was comparable to, but not
better than, the best equivalent DL model (14
additional experiments with PyTorch models)

Qiskit state vector simulator
Best quantum model (7, 3, 2)
Number of parameters: 180
Number of iterations: 2,000
Speed of model training: 15 mins

PyTorch
Equivalent classical model (7)
Number of parameters: 9,741
Number of iterations: 30,000
Speed of model training: 20 secs

noisy

reconstructed

pure

noisy

reconstructed

pure

 10 / 19

Problems discovered
Solutions proposed

An approach adopted in the QAE
creation was to rely on the VQA
development in Qiskit

One of the issues found to affect the
QAE training performance was:
Dealing with deep quantum circuits consisting
of large numbers of unstructured parameters

The currently pursued solution is to
explore PennyLane / PyTorch ability to
create hybrid models of well integrated
quantum and classical components.
Large quantum models can be decomposed
into classical DL NNs and a number of smaller
quantum circuits.

Their parameters can be structured into layers
so that they could be managed effectively by
PyTorch during the optimisation process.

Qiskit recently adopted a similar open
source framework “torchquantum”.

|0⟩|0⟩

LatentSpace

ImpliedTrashSpace

QAEEncoder QAEDecoder OutputGenerationInputPreparation

Quantum or ClassicalLayers ClassicalLayersQuantumLayers QuantumLayers

ClassicalLayers

Solution:PennyLane/ PyTorchapproach to QAE development

PennyLane / PyTorch Neural Networkof classical and quantum components

 11 / 19

Anatomy of QAE Ansatze
QAE encoder and decoder (PennyLane)

QAE encoder and decoder do not need to be
symmetric (here, they are not)

The hybrid QAE separated the encoder and
decoder into two shallow circuits, which can be
trained very effectively and fast.

However, hybrid QAEs lose some quantum
information, to the detriment of their function.

PennyLane and PyTorch have excellent support for
gradient manipulation, offering several highly
efficient gradient optimisers.

Hence, we adopted a Nadam optimiser.

Note that Qiskit also provides some support for
passing gradients into its optimisers, however, this
is not being highlighted as Qiskit feature.

hybrid latent
space

rotation
block

entangling
block

rotation
block

rotation
block

rotation
block

input
block

hybrid output
block

ansatz layer ansatz layer ansatz layer ansatz layer

m
ea

su
re

d
qu

bi
ts

en
co

di
ng

 q
ub

its
ex

tr
a

qu
bi

ts

classical
layer (PyTorch)

entangling
block

entangling
block

entangling
block

tr
as

h
qu

bi
ts

la
te

nt
 q

ub
its

classical
layer (PyTorch)

Note that classical layers are optional, however they
greatly improve the model performance when
running on a quantum simulator.
They can also add features not available in pure
quantum models (e.g. nonlinearity).
They may, however, prevent quantum advantage.

It is a “minimum” hybrid model

 12 / 19

Comparing results
(PennyLane vs PyTorch)

Varying the circuit depth: quantum model in PennyLane + PyTorch @ 1000 epochs

The experiments show:
The larger the QAE latent space, the better learning
(the accepted idea that reducing latent space helps abstraction is wrong)

There is an optimum depth for the QAE model.
PennyLane “minimum” hybrid models outperformed Qiskit
models in training, but not in validation.
Within the limit of 1000 epochs, QAE outperformed CAE.
In general, QML models on simple tasks (such as DL AE) do
not outperform the classical models – so to gain quantum
advantage you need to pick the application very carefully.

Varying the latent space: DL CAE model in PyTorch @ 1000 epochs

Varying the latent space: quantum model in PennyLane + PyTorch @ 1000 epochs

USA beer sales (IRI)

 13 / 19

Comparing results
(PennyLane vs PyTorch)

Mean MSE in training (log y axis):
PennyLane + PyTorch @ 1000 epochs

A more in-depth analysis of model training shows:
In training and validation, the CAE models are less sensitive to the
size of their latent space.
The QAE models show a very definite differentiation of their
performance in relation to the size of latent space.
While both CAE and QAE still have the capacity for further learning
(training), the CAE models reached their generalisation capacity
(validation), while QAE models can still improve (validation).
CAE training curves show a lot of volatility, while QAE curves are
smooth, indicating their training is more predictable.
Note that the structural parameters for CAEs and QAEs may not
be optimal, so the performance scores are indicative only.

Mean MSE in validation (log y axis):
PyTorch @ 1000 epochs

Mean MSE in validation (log y axis):
PennyLane + PyTorch @ 1000 epochs

USA beer sales (IRI)

Training of classical modelsTraining of quantum models

Validation of quantum models

Validation of classical models

Mean MSE in training (log y axis):
PyTorch @ 1000 epochs

 14 / 19

Results

USA beer sales (IRI)
real-world data

“2sins”
synthetic data

USA beer sales (IRI)
Training

USA beer sales (IRI)

More results
PennyLane+

PyTorch

After PennyLane
training the QAE
models (left) seem to
fit the original data
much closer (better
denoising) than the
Qiskit models.

Each model type was
trained 10 times,
randomly initialised.
Mean performance
with variance was
considered.

It is important to note
that in training, Qiskit
models converged
within 1000 epochs.

PennyLane models (as
can be observed here)
still have the capacity
to learn beyond the
1000 epochs.

PennyLane performed
consistently well on
both synthetic (simple
functions) and real-
world data (beer sales).

Sample of experiment
means with variance
bands across runs.

USA beer sales (IRI)
Validation

ze
ro

D
ec

od
er
†

In
 tr

ai
ni

ng

LatentSpace

TrashSpace

EncodedPure Input

ze
ro

Replicating Half-QAE / single stage (pure data only)

We can train a pure QAE by training
its half by converging trash info to
zero, the other half is its inverse.

We can train a noisy half-QAE by
stacking it with a pure half-QAE

We can also side-train a noisy
half-QAE by converging its latent
space to a pretrained pure half-QAE

ze
ro

D
ec

od
er

Tr
ai

ne
d

|0⟩|0⟩E
nc

od
er

In
 tr

ai
ni

ng

LatentSpace

TrashSpace

EncodedNoisy Input Decoded - InvertedNoise-Free Output
Approximating or Denoising Stacked half-QAEs /two stages (pure+noisy data)

ze
ro

Alternative Architectures

E
nc

od
er

In
 tr

ai
ni

ng

EncodedNoisy Input

ze
ro

D
ec

od
er
†

Tr
ai

ne
d

ConvergingLatentSpace

EncodedPure Input

eq
ua

l

ze
ro

Denoising with half-QAE Sidekick / two stages (pure+noisy data)

di
ffe

re
nc

e

Merriam-Webster Dictionary (acc 3 March, 2024):Someone’s sidekick is a person closely associated with another as a subordinate or partner

A novel approach to QuTSAE training(exclusive preview)

 16 / 19

Summary
Simulated VQA QAE models

Model design insights
● We have discussed design decisions

taken in the development of denoising
quantum time series autoencoders

● Input encoding strategy determines what
ansatz can be employed, and vice versa

● Methods of measuring and interpreting a
quantum state impact the choice of the
loss/cost function

● Ansatz architectural properties must fit
the models aim and function

● Ansatz width, depth, the number of
trainable parameters, additional degree
of freedom (extra qubits), and data used
in training, all influence the success of
the model optimisation

● Selection of a suitable cost function and
an optimiser require experimentation

Model quality and performance insights
● Assessment of the quantum model quality

requires a suitable theory and statistical analysis!
● QAE pure quantum models are merely

approaching the performance of classical models
● On simulators, hybrid quantum-classical models

perform better than either pure quantum or pure
classical models

● Hybrid models lose their quantum efficiency when
trained and executed on quantum machines

● Quantum models can take advantage of the
model features absent from classical systems

● Hybrid models can inject the model features
missing from the pure quantum systems

Current and future work
● Tighter integration between classical and

quantum methods – more effective optimisation
● Investigation of different QAE architectures, their

quality and effectiveness
● Moving beyond noise – anomalies and chaos
● Moving beyond QAEs – QGANs and QTransformers

 17 / 19

Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled Photos from Unsplash

 18 / 19

Appendix:
Concepts in TS Analysis

● Time series analysis aims to identify patterns in
historical time data and to create forecasts of
what data is likely to be collected in the future

● Applications include heart monitoring, weather
forecasts, machine condition monitoring, etc.

● Times series analysis is well established with
excellent tools and efficient methods, yet some
organisations aim to improve them further

● Time series must have an unique index
- a time-stamp sequencing the series

● Time series needs to be ordered by its index
● Time series will also have some

time-dependent attributes to be modelled
● Time series can be univariate or multivariate,

depending on whether a single or multiple
attributes are being investigated

● Missing indeces and their dependent attributes
may need to be imputed (e.g. interpolated)

● Index needs to be of appropriate granularity,
e.g. years, months, weeks, days, hours, etc.

● Attributes need to be aggregated to the
required index granularity

● Time signal often shows seasonality in data,
i.e. a regular repeating pattern

● With aggregation and smoothing seasonality
can be removed and trends visually identified

● Majority of forecasting methods require
time-series to be stationary, i.e. its mean,
variance and auto-correlation are constant

● Quantum time series analysis (QTSA) is a
promising approach to time series analysis and
forecasting!

Sales of beer in USA
Mean not constant

Variance not constant

Non-linear trend
Visibly not stationary

 19 / 19

Appendix:
Quantum Neural Networks

● A typical QNN consists of two main
components, i.e. a feature map and an
ansatz (also called variational model)

● The feature encodes the input data and
prepares the quantum system state, using as
many features as there are qubits

● The ansatz consists of several layers and,
similarly to a classical NN, is responsible for
inter-linking the layers - this is accomplished
by trainable Pauli rotation gates and
entanglement blocks

● Finally, the qubit states are measured and
interpreted as QNN output

● In contrast to function / data fitting,
QNNs are able to perform pattern
matching, i.e. work with a sequence of
values themselves rather than with the
mapping between an index and values

● In the following experiments, we will
adopt a sliding window approach to
structuring the time series

● However, the standard QNN model does
not lean itself to time series analysis, i.e.

– You are limited to the TS window of size
equal to the number of qubits

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. “The
Power of Quantum Neural Networks.” Nature Computational Science 1, no. 6 (June 2021): 403–9.

https://doi.org/10.1038/s43588-021-00084-1.

Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020.
https://towardsdatascience.com/quantum-neural-networks-for-fintech-dddc6ac68dbf.

Feature Map Ansatz

Pattern
Matching

VQR Model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

