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Development of Quantum Autoencoders
Worst case scenario: denoising time-series and signals

Jacob L. Cybulski 
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Introduction to QAEs
Denoising TS QAEs
Design choices
Architectural choices
Input encoding choices
Output / cost function choices
Encoder / decoder ansatze choices
Optimization / training choices
Qiskit vs PennyLane vs PyTorch
Summary of results
Conclusions and future work

The aims of this session:

To explore and understand 
various design issues while 
developing a complex 
quantum autoencoder
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Problem

Can quantum machine learning assist 
detection of complex patterns in time series 
and signals from the preceding data 
sequences? How?

Sample applications include: machine 
condition monitoring, astronomical 
observations, nationwide marketing and 
sales, earthquake prediction, EEG or ECG 
analysis, etc. 

Acknowledgements:
Gearbox and Vibration Analysis ML, 2023, 

Nakkeeran, Kaggle.com
Gemini/GNIRS spectra, 2017, 

NOIRLab, Wikimedia.
Bronnenberg, B.J., Kruger, M.W., Mela, C.F., 2008. Database 

Paper —The IRI Marketing Data Set. Marketing Science 27, 
745–748. https://doi.org/10.1287/mksc.1080.0450

Earthquake, Mag 7.3, East Coast of Honshu, Japan, 2011,
The Global Seismogram Viewer, http://ds.iris.edu/gsv

EEG of brain and heart action, 2012, 
Otoomuch, Wikimedia.

Machine condition monitoring

Astronomical observations

EEG analysis

Earthquakes

Forecasting of 
beer sales (USA)

all data are
temporal

all suffer from
noise and anomalies

all could
potentially lead to

catastrophic failures
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Problem: A hypothetical

A fragment of the US beer sales
of the selected beer brand

True weekly sales

Inaccurate weekly 
projections aggregated from 

manufacturers’ forecasts

Corrected forecasts 
from inaccurate 

projections

Question: 
should we average 
inaccurate forecasts or 
should we try a model 
based denoising of 
forecast inaccuracies?

Another question:
what is normal and 
what is abnormal?

The noise shown here is greatly 
amplified and distorted to 

create the worst case scenario
(noise of 10% was injected)

Super Bowl?

Qiskit
PennyLane
PyTorch
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Projects
• Quantum computing
• Quantum machine learning
• Quantum time series analysis

and anomaly detection
• Classical machine learning
• Data visualisation

Personal
• Recreational cycling
• Reading science and Sci-Fi
• Quantum challenges and 

hackathons
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Quantum Autoencoder (for Time Series)

Autoencoders (AE) are deep learning (DL) 
models that compress input into its 
essential features and then recover the 
original information from them

AEs lose the infrequent, insignificant or 
unwanted parts of information

They are used for data denoising and 
anomaly detection, e.g. in images / signals

There are few applications of QML methods 
to time-series analysis, TS applications of 
quantum AE (QAE) are even fewer

QAEs have the potential to deal with highly 
complex noise and anomaly patterns

Training of QAEs is difficult, due to:
● Potentially many features (e.g. TSs)

(lots of qubits and/or parameters)
● Complex measurement strategies
● Unsupervised learning

(we do not know what is noise)
● Possibility of barren plateaus
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Input sequence(e.g. noisy signal) Output sequence(e.g. noise-free signal)

Compressed sequence(e.g. signal essence)

Lost information(e.g. noise)
Trainableansatz Trainableansatz

Measurement

Model training by presenting pairs of noisy and pure TS sequences

Optimizationof ansatzeparametersTypical QAE 
architecture

In QAE development, the key concerns include:
overall model architecture, data encoding and decoding, 
ansatz design and its parameters optimisation strategy
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Input encoding / embedding 
for QAE processing

In general, QAE input and output is an unrestricted 
collection of real values (floats) – this guided our 
selection of data encoding methods.

We rejected the following encoding methods:

Basis encoding, with qubits acting as 
bits in the encoded number (logical / int) 
to be processed later in the circuit.

QRAM encoding, where all possible inputs are 
known in advance, pre-coded in a circuit, and 
used by reference.

Angle encoding suits QAE design,
with input values represented as

qubit state rotations (float). 

In our experiments we used
angle encoding relative to

|+⟩ state, with values ∊ [-1, 1]
scaled to arange [0, π], and coded
as rotations up (<0) or down (≥0).

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.  

http://link.springer.com/book/10.1007/978-3-030-83098-4.
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Amplitude encoding is probably the least 
understood, however, it is one of the most 
useful encoding schemes - attractive for QAEs.

It embeds input as a circuit 
state normally measured on 
output, i.e. each data point 
is encoded as expectation 
value of multi-qubit 
measurement (int / float).

The problem with this encoding 
scheme is that for each unique 
input value, the structure of 
encoding gates is different. 
The circuit is not differentiable, 
which may be suitable for 
simulators, but difficult to use 
with GPUs and QPUs.

Example: data encoded as 
ᴪ was normalised vector
[1/8, 2/8, 3/8, 2/8]. The 
measurement reflects the 
input data proportions.
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Measurement &
Interpretation

There are many ways of decoding the circuit 
state to form classical output data, e.g. we can:

● measure all qubits 
(as related to the global cost function)

● measure a selection of qubits 
(as related to the local cost function)

● measure the circuit state in different ways 
(e.g. as counts, expvals or probabilities)

● reinterpret circuit measurements 
into different combinations of outcomes, 
e.g. to predict larger TS horizons (future)

or

this or this?

Repeated circuit measurement can be interpreted as 
outcomes of different numeric types, e.g. as a:

● binary outcome 
(e.g. a single qubit measurement), 

● bitwise representation of an integer number 
(e.g. most frequent combination of multi-qubit 
measurements), or 

● value of a continuous variable 
(e.g. expectation value of a specific outcome).

horizon 1

horizon 2

horizon 3

integer logical

float

global local

or in-between, 
such as parity 
interpretation
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Anatomy of QAE Ansatze
QAE encoder and decoder (Qiskit)
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QAE encoder QAE decoder

QAE encoder and decoder are often 
symmetric (as shown here)
They are parameterized circuits (ansatze), 
arranged into layers of trainable rotation  
and entangling blocks
Ansatze may be of a different size than 
the requirements of input/output blocks

The selection of the optimizer of ansatze parameters requires 
some preliminary investigation of their effectiveness
This depends on the model architecture, ansatz design, data 
encoding and decoding, as well as the nature of training data
In our project we evaluated gradient based optimizers (ADAM 
and SPSA) as well as linear and non-linear approximation 
methods (such as COBYLA and BFGS) – COBYLA was adopted

Trash qubits are 
being reset!

This model features mid-circuit measurement 
which is not a unitary operation, hence it is not 
differentiable and hard to optimise.
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Experiments
with QAE TS denoising (Qiskit)

Quantum model validation 
data fit (Qiskit)

USA Beer Sales (IRI)

Classical model validation 
data fit (PyTorch)

USA Beer Sales (IRI)

As the initial aim was to denoise TSs and use them 
for forecasting, differencing was applied to data

A series of over 60 (Qiskit) experiments were 
conducted to find the optimum QAE model

We determined the time series window size =
the size of QAE model input and output blocks

Then circuit parameters were varied, i.e. the size 
of latent (and trash) space, the number of 
additional qubits, and the number of parameters

The optimum model parameters were selected 
based on the model validation scores (MAE)

The best QAE model was comparable to, but not 
better than, the best equivalent DL model (14 
additional experiments with PyTorch models)

Qiskit state vector simulator
Best quantum model (7, 3, 2)
Number of parameters: 180
Number of iterations: 2,000
Speed of model training: 15 mins

PyTorch
Equivalent classical model (7)
Number of parameters: 9,741
Number of iterations: 30,000
Speed of model training: 20 secs

noisy

reconstructed

pure

noisy

reconstructed

pure
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Problems discovered
Solutions proposed 

An approach adopted in the QAE 
creation was to rely on the VQA 
development in Qiskit

One of the issues found to affect the 
QAE training performance was:
Dealing with deep quantum circuits consisting 
of large numbers of unstructured parameters

The currently pursued solution is to 
explore PennyLane / PyTorch ability to 
create hybrid models of well integrated 
quantum and classical components.
Large quantum models can be decomposed 
into classical DL NNs and a number of smaller 
quantum circuits.

Their parameters can be structured into layers 
so that they could be managed effectively by 
PyTorch during the optimisation process.

Qiskit recently adopted a similar open 
source framework “torchquantum”.

|0⟩|0⟩

LatentSpace

ImpliedTrashSpace

QAEEncoder QAEDecoder OutputGenerationInputPreparation

Quantum or ClassicalLayers ClassicalLayersQuantumLayers QuantumLayers

ClassicalLayers

Solution:PennyLane/ PyTorchapproach to QAE development

PennyLane / PyTorch Neural Networkof classical and quantum components
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Anatomy of QAE Ansatze
QAE encoder and decoder (PennyLane)

QAE encoder and decoder do not need to be 
symmetric (here, they are not)

The hybrid QAE separated the encoder and 
decoder into two shallow circuits, which can be 
trained very effectively and fast.

However, hybrid QAEs lose some quantum 
information, to the detriment of their function.

PennyLane and PyTorch have excellent support for 
gradient manipulation, offering several highly 
efficient gradient optimisers.

Hence, we adopted a Nadam optimiser.

Note that Qiskit also provides some support for 
passing gradients into its optimisers, however, this 
is not being highlighted as Qiskit feature.
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Note that classical layers are optional, however they 
greatly improve the model performance when 
running on a quantum simulator. 
They can also add features not available in pure 
quantum models (e.g. nonlinearity).
They may, however, prevent quantum advantage.

It is a “minimum” hybrid model
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Comparing results
(PennyLane vs PyTorch)

Varying the circuit depth: quantum model in PennyLane + PyTorch @ 1000 epochs

The experiments show:
The larger the QAE latent space, the better learning
(the accepted idea that reducing latent space helps abstraction is wrong)

There is an optimum depth for the QAE model.
PennyLane “minimum” hybrid models outperformed Qiskit 
models in training, but not in validation.
Within the limit of 1000 epochs, QAE outperformed CAE.
In general, QML models on simple tasks (such as DL AE) do 
not outperform the classical models – so to gain quantum 
advantage you need to pick the application very carefully.

Varying the latent space: DL CAE model in PyTorch @ 1000 epochs

Varying the latent space: quantum model in PennyLane + PyTorch @ 1000 epochs

USA beer sales (IRI)
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Comparing results
(PennyLane vs PyTorch)

Mean MSE in training (log y axis): 
PennyLane + PyTorch @ 1000 epochs

A more in-depth analysis of model training shows:
In training and validation, the CAE models are less sensitive to the 
size of their latent space.
The QAE models show a very definite differentiation of their 
performance in relation to the size of latent space.
While both CAE and QAE still have the capacity for further learning 
(training), the CAE models reached their generalisation capacity 
(validation), while QAE models can still improve (validation).
CAE training curves show a lot of volatility, while QAE curves are 
smooth, indicating their training is more predictable.
Note that the structural parameters for CAEs and QAEs may not 
be optimal, so the performance scores are indicative only.

Mean MSE in validation (log y axis):
PyTorch @ 1000 epochs

Mean MSE in validation (log y axis):
PennyLane + PyTorch @ 1000 epochs

USA beer sales (IRI)

Training of classical modelsTraining of quantum models

Validation of quantum models

Validation of classical models

Mean MSE in training (log y axis): 
PyTorch @ 1000 epochs
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Results

USA beer sales (IRI)
real-world data

“2sins”
synthetic data

USA beer sales (IRI)
Training

USA beer sales (IRI)

More results
PennyLane+

PyTorch

After PennyLane 
training the QAE 
models (left) seem to 
fit the original data 
much closer (better 
denoising) than the 
Qiskit models.

Each model type was 
trained 10 times, 
randomly initialised. 
Mean performance 
with variance was 
considered.

It is important to note 
that in training, Qiskit 
models converged 
within 1000 epochs.

PennyLane models (as 
can be observed here) 
still have the capacity 
to learn beyond the 
1000 epochs.

PennyLane performed 
consistently well on 
both synthetic (simple 
functions) and real-
world data (beer sales).

Sample of experiment 
means with variance 
bands across runs.

USA beer sales (IRI)
Validation
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Replicating Half-QAE / single stage (pure data only)

We can train a pure QAE by training 
its half by converging trash info to 
zero, the other half is its inverse.

We can train a noisy half-QAE by 
stacking it with a pure half-QAE 

We can also side-train a noisy 
half-QAE by converging its latent 
space to a pretrained pure half-QAE
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Merriam-Webster Dictionary (acc 3 March, 2024):Someone’s sidekick is a person closely associated with another as a subordinate or partner

A novel approach to QuTSAE training(exclusive preview)
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Summary
Simulated VQA QAE models

Model design insights
● We have discussed design decisions 

taken in the development of denoising 
quantum time series autoencoders

● Input encoding strategy determines what 
ansatz can be employed, and vice versa

● Methods of measuring and interpreting a 
quantum state impact the choice of the 
loss/cost function

● Ansatz architectural properties must fit 
the models aim and function

● Ansatz width, depth, the number of 
trainable parameters, additional degree 
of freedom (extra qubits), and data used 
in training, all influence the success of 
the model optimisation

● Selection of a suitable cost function and 
an optimiser require experimentation

Model quality and performance insights
● Assessment of the quantum model quality 

requires a suitable theory and statistical analysis!
● QAE pure quantum models are merely 

approaching the performance of classical models
● On simulators, hybrid quantum-classical models  

perform better than either pure quantum or pure 
classical models

● Hybrid models lose their quantum efficiency when 
trained and executed on quantum machines

● Quantum models can take advantage of the 
model features absent from classical systems

● Hybrid models can inject the model features 
missing from the pure quantum systems

Current and future work
● Tighter integration between classical and 

quantum methods – more effective optimisation
● Investigation of different QAE architectures, their 

quality and effectiveness
● Moving beyond noise – anomalies and chaos
● Moving beyond QAEs – QGANs and QTransformers
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Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled Photos from Unsplash
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Appendix:
Concepts in TS Analysis

● Time series analysis aims to identify patterns in 
historical time data and to create forecasts of 
what data is likely to be collected in the future

● Applications include heart monitoring, weather 
forecasts, machine condition monitoring, etc.

● Times series analysis is well established with 
excellent tools and efficient methods, yet some 
organisations aim to improve them further

● Time series must have an unique index 
- a time-stamp sequencing the series

● Time series needs to be ordered by its index
● Time series will also have some 

time-dependent attributes to be modelled
● Time series can be univariate or multivariate, 

depending on whether a single or multiple 
attributes are being investigated

● Missing indeces and their dependent attributes 
may need to be imputed (e.g. interpolated)

● Index needs to be of appropriate granularity, 
e.g. years, months, weeks, days, hours, etc.

● Attributes need to be aggregated to the 
required index granularity

● Time signal often shows seasonality in data, 
i.e. a regular repeating pattern

● With aggregation and smoothing seasonality 
can be removed and trends visually identified

● Majority of forecasting methods require
time-series to be stationary, i.e. its mean, 
variance and auto-correlation are constant

● Quantum time series analysis (QTSA) is a 
promising approach to time series analysis and 
forecasting!

Sales of beer in USA
Mean not constant

Variance not constant

Non-linear trend
Visibly not stationary
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Appendix:
Quantum Neural Networks

● A typical QNN consists of two main 
components, i.e. a feature map and an 
ansatz (also called variational model)

● The feature encodes the input data and 
prepares the quantum system state, using as 
many features as there are qubits

● The ansatz consists of several layers and, 
similarly to a classical NN, is responsible for 
inter-linking the layers - this is accomplished 
by trainable Pauli rotation gates and 
entanglement blocks

● Finally, the qubit states are measured and 
interpreted as QNN output

● In contrast to function / data fitting, 
QNNs are able to perform pattern 
matching, i.e. work with a sequence of 
values themselves rather than with the 
mapping between an index and values

● In the following experiments, we will 
adopt a sliding window approach to 
structuring the time series

● However, the standard QNN model does 
not lean itself to time series analysis, i.e.

– You are limited to the TS window of size 
equal to the number of qubits

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. “The 
Power of Quantum Neural Networks.” Nature Computational Science 1, no. 6 (June 2021): 403–9. 

https://doi.org/10.1038/s43588-021-00084-1.

Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020. 
https://towardsdatascience.com/quantum-neural-networks-for-fintech-dddc6ac68dbf.

Feature Map Ansatz

Pattern
Matching

VQR Model
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