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Name ¢ Plot Function, g(z)

Neu ral Networks MLP = a simple neural network / :
capable of learning any “smooth” function By step |} Ess
A class of complex ML models learns to associate inputs with outputs g el
|| e
* Multi-Layer Perceptrons (MLP) take numerical ol B el
input and produce numerical output ‘ e L
hyperbolic smht(z) = %
* MLPs are structured into layers =
Rectified + - 0 #ISD
* Layers consist of neurons e | :iix(;f;i"w
* Neurons hold activation - value in range [-1,+1] a=(r=e( )
H - . (GELU)Z = 2d(x)
* Weighted links connect neurons of adj. layers ot | FEEEEREEEEE [t e
* Activation is a weighted sum of activations of e B | CCR I T
neurons from the previous layer e {“‘("ja“?;‘e{f :
Scaled A @ < ] i;
* Bias is a value added to the sum s o s
= 1.0507 and
- - - - - (SELU)[JEI & = 1.
* Activation function is applied to the sum to scale - -
the result back to the interval [-1, 1] v/ |{oe gz
(Leaky . @ ifz >
* Optimisation is the process to identify optimum e —
weights and biases, it is commonly iterative leas e { oo
(PRQLU)[];] parameler (23
* Optimisation aims to reduce cost or aggregated s @
loss, a distance between the calculated and * This process can be accelerated by using = - ,\er
. . shrinkage, 1! A&
expected results specialised hardware, e.g. GPUs or TPUs = N

* Other NNs: CNN, AE, GAN, LSTM + QNNs
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Quantum Neural Networks
Specifically Quantum MLPs

*  The QNN variational model is typically represented by
a quantum circuit of three components, i.e.

>

>

feature map encoding QNN’s classical input data
and preparing the circuit’'s quantum state

ansatz consisting of several layers of trainable
parameters (Pauli rotations), responsible for
guantum state processing and transformation
measurement of the circuit’'s quantum state,
which can subsequently be interpreted as QNN’
classical output

*  QNNs can be trained with variational quantum
algorithms and a wide range of classical optimisers.

*  Pure quantum training strategies are also possible.

As per a VQA Model

Sample Feature Map (Input)

Sample Ansatz (Processing)

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli,

and Stefan Woerner. “The Power of Quantum Neural Networks.”

Nature Computational Science 1, no. 6 (June 2021): 403-9.

Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020.

QNNs

can deal with highly complex computation (as QM)
can deal with large volume of data (as NN)

can process entire probabilistic distributions of
values (superposition) and utilise parameters space
of exponential size (entanglement)

require repeated execution to produce output

are missing some efficiency of classical NNs
(non-linear activations and regularisation strategies)

are difficult to process on quantum simulators of
limited computational capacity

need experimentation and extensive data
preparation — there is no magic in quantum tech!

Sample Measurement (Output)

o 8

1
[ =

- o s
@ -I——-—Jb—_—é ; :

»—

&

-

-

=—|




Data embedding:

Basis encoding and decoding

Basis embedding is the commonly used
strategy for quantum encoding and decoding
of integer numbers, where:

* gubits act as bits of the encoded numbers

* circuit state can be interpreted as bits of
the numeric value on output

* application needs a single (or very few)
integer value on input and output

U
1@
Encoding and

measuring number 11

3

-©
O
O

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.
http://link.springer.com/book/10.1007/978-3-030-83098-4.

There are many different approaches to quantum data encoding
and decoding that are suitable for QNN, e.g. basis, angle and
amplitude embedding.

Measuring state of the circuit (amplitude of possible outcomes) Measuring expectation values of each qubit
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Angle embedding represents numeric values as properties

Data embEdd i ng . of qubit state rotation (angle, amplitude or probability)

Angle encoding and decoding The rotation operators are the basic quantum operation

Encoding rotations are performed around x, y, z axes of the
Bloch sphere (multiple values per qubit are possible)

o e ——— Rotations are relative to a specific qubit state, e.g. |0)
, @ Input encoding can be repeated across the circuit, called
. reuploading, which improves the model performance
— £ 0 As training will place qubit states in areas x < 0 and around
2 @ the z axis, measurements may not distinguish these states
Rotations were relative to “ ”
|0y initialisation from pure” X > Oandz=0.

~
Qubits

z \
Input 0)
Values entered:  [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)] Rotation relative to [:pi2..0)
Ry angles used: [1.047, 0.723, 2.094] 0y initialisation  ~  Feel, .

+af---—--- N
Measurements ’
Probabilities: [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]] [ Ry} - 1
Amplitudes: [0.5, 0.75, -0.5] ; g 4

RY(+B)/ ;
777777777777777 k’/
) R (0..4pil2]
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Data embedding:

Amplitude encoding and decoding

-}
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Amplitude embedding is one of the most useful
encoding / decoding strategies

Unless supported by the quantum platform, it is
considered the most difficult (see Sutor 2024)

In amplitude encoding, each data point is
encoded as expectation value of multi-qubit
measurement of all qubits’ states

This way, we can embed 2" numbers
into a circuit!

ExpVal

0.6 4

0.4 4

0.2 4

0.0 4

Sutor, R.S., 2024. Dancing with Qubits, Second Edition. Packt Pub.

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.
http://link.springer.com/book/10.1007/978-3-030-83098-4.

Measurement Qutcomes

There are many other
methods of data
encoding, e.g. QRAM,
time-evolution, or dense-
angle, or Hamiltonian
encoding.

Many of these methods
are offered as ready-
made feature maps.

Qiskit feature maps
include:

0.1348]000) — 0.4045[001) + 0.6742|010) + 0.5394011) + 0.2697[100)+
0]100) + 0]101) + 00[110) + 00[111)

» ZfeatureMap
» ZZFeatureMap
* PauliFeatureMap

g,
04"0‘, 1
%,
04“)3 1

§ & & §

Results
Consider a vector:
v = [0.1,-0.3, 0.5, 0.4, 0.2],
which needs to be normalised by the vector length:
sqrt(0.1°+(-0.3)?4+0.5°4-0.424-0.27),
which results in a new vector (approximately):
v’ & [0.13484 -0.40452 0.6742 0.53936 0.26968].

To encode 5 amplitudes in a quantum circuit, we need at
least 3 qubits. Thus, resulting in the following encoding:

0.1348/000) — 0.4045(001) + 0.6742(010) + 0.5394|011) + 0.2697|100)+
0[100) + 0[101) + 00110} + 00/111}

We will rely on PennyLane and Qiskit to generate quantum
gates for this circuit ...



Commonly USEd Model measurement and interpretation of results share their

. . fundamental concepts and methods with data encoding.
measurements and mterpretatlon

There are many ways of obtaining the outcome of a global cost local cost
circuit execution, e.g. we can measure: N
* all qubits (global cost) } variable a
: —
* afew qubits (local cost) or
. x _— A
¢ groups of qubits @ @ } variable b
* as counts of repeated measurements ?‘ —j ?‘

* as probabilities of |0) and |1)
* as expectation values, P(0)-P(1)

° asvariance, etc. .
’ 0283 100 0900

Repeated circuit measurement can be interpreted as 024 A8
outcomes of different types, e.g. £ float or :

2016 ® 0.50
* as a bhinary outcome: £ £

single qubit measurement
0.00

o4
=
S

° asaninteger:
multi-qubit measurement 5 4 $5873 .

* as acontinuous variable: " integer " Jogical

expectation value of a specific outcome
. . . Probability distribution of measurements can be further interpreted, e.g. we
Circuit state measurement has an impact on the could check parity of the probability kets (e.g. |110) is even, while [111) is odd),

add all even and odd probabilities respectively, and treat the result as a logical

calculation of the loss/cost function measurement.

v



l Training of Quantum Neural Networks

* QNN training needs a loss / cost function
and an optimiser of the model parameters

. . . Optimisation
* The loss function and optimiser can either R EEEEEEEEEE -----------;----  ofansatz = -------
. | | | parameters |
be pure quantum or hybl’ld Encoded | | | Measured
Data ! ! ! results
* Pure quantum approach often relies on P— v v v -
quantum adiabatic or quantum annealing i @ | |-
optimisation, and Grover-like amplitude 2 : Q: %
amplification N ' g =
* A hybrid approach uses variational TEE R EE R e . T I Sl
quantum algorithms (VQA), and relies on * ramable Measurements 3
the QNN execution on a quantum machine, | . 3
and its parameters optimisation conducted R prosentg A DY T -
on a classical machine and output examples

* Hybrid training of QNNSs is
identical to training classical NN models



PIN02 aM ‘|apoLW 1Saq 8y} pul} oL

- - - Now we will look for the best model, i.e. 3 g g
O ptl m Isatlo n exam p I e the model which generates the lowest MAE § 23
: MAE, 585
Gradient descent }’%’_ We can start at any point  © 3 »
The cost of each e on the cost surface given ?D é g
_ _ _ model is a point in a - Wbyif" bgnd I\r/:?E 228
Consider the house price (y) as a function of the 3D space th:;pﬁ’ixﬁﬁw‘; =
size of its front yard (x). Let us consider all models ax b x MAE e by walking down the 3 §
(fap) to estimate the house prices by the formula: _ He steepest slope, e
All such points form : this is called: 2o
y = fa,b(X) —a*x+hb a “cost” surface. gradient descent 2
Each model is parameterised by a and b, and can ~ The shape of such a | e 52
P y ; =
fit a sample A={x, y} of house training data (Ames  surface we call the LR
real estate). cost landscape. B 4
= hh del f il K When a model has . cost
or each house (x, y), a model f.p will make some o o rameters, hyperplane
error (loss). For all houses in A it will accumulate the cost surface is
these errors as a single value (cost), e.g. MIAE called a hyperplane. . optimum params
(mean absolute error). at min(MAE)
yﬁ ” The optimiser controls this By using gradient descent, the
. process via its hyper-parameters, optimum cost (and thus the
: i.e. parameters of the model), was found at:
" What if we wanted to use a gradient descent itself:
200k model of this type: ) learning rate A=1060 (Lot_Frontage)
: 2w momentum B=90000 (Intercept)
248 - N . hape(X, y) = a*x™+D*y+C decay  \MAE=53473.007 (Error)
o epsilon

25 50 7 100 125 150 175 200 225 250 275 300
Lot_Frontage X



Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., Woerner, S., 2021.
The power of quantum neural networks. Nature Comput Sci 1, 403—409.

M eas u ri n g Q N N L q u al ity" Abbas, A., Sutter, D., Figalli, A., Woerner, S., 2021.

Effective dimension of machine learning models, arXiv:2112.04807.

An area Of Jacob’s research Cybulski, J.L., Nguyen, T., 2023. Impact of barren plateaus countermeasures on the

quantum neural network capacity to learn, Quantum Information Processing 22, 442.

*  The common way of measuring QNN quality is to *  Capacity to learn has been explored and formalised in
measure its ability to generalise beyond training data. a number of different ways:

* This can be assessed by using separate data sets, i.e. 2  VC-dimension as the set of functions the neural network
validation and test data, as well as some metric, e.g. could represent depending on the size of the training set

and its tolerance for the error rates (Vapnik and
Chervonenkis, 1971)

effective VC-dimension which takes into account not only

MSE, MAE, accuracy, cross-entropy, etc.
* At different points in training, we could also measure the >

model capacity: the size of the training data and error rates, but also the
> storage capacity measured in bits and bytes of information probability distribution of its measurements (Vapnik, Levin
(Little and Shaw 1978, Newman 1988) & Le Cun, 1994)
2 network potential for storing input-output patterns (Gardner 2 volume of the cost gradient geometry emerging from the
and Derrida, 1988, Gardner, 1988) network's optimisation, and which can be defined using

o ] N Fisher Information Matrix (Karakida, 2020)
2 requisite complexity as the ability to accurately 5 .

. . . that can be represented (Lewenstein et al, 2021)
2  optimal brain damage as the ability to accommodate

removal of parameters without adversely affecting 2 effective quantum dimension as the relationship between
information contents (LeCun et al., 1989) the model geometry, expressive power and redundancy,
] - i effectiveness of its training and initialisation strategy
2 capacity to learn as the ability to generalise from the (Abbas et al, 2021)

previously learnt training data



*  QNNs have similar training difficulties as Nns

Barren plateaus * BPs are related to vanishing gradients in NNs

An area of Jacob’s research *  BPs presence does not mean the model is bad,
its training is just more difficult

Barren plateaus (BPs) are large “flat” areas in the quantum .  Bps are the natural feature of measurements in
model’s cost landscape, which impede model optimisation. high dimensional space of model parameters

*  BPs do not just “exist”, they emerge in training
*  BPs are commonly flat, however, their surface

may become rough and bumpy due to noise
+ 10 *  BP countermeasures can make your model worse
| * There exist well-known causes of BPs and
/ - Ver b T 0.9 there are well-known BP countermeasures, e.g.
ery bumpy :
7 Potential BP & o= | plateau 1) use fewer qubits / layers / parameters
§ _ Training difficulties / T o8 2) use local cost functions
Optimisation path V\ [ 3) beware of random params initialisation
o : ggg’;}iﬁti’g/’”’ i 0.7 4) use BP-resistant model design (e.g. layerwise)
. 5) use BP-resistant models (e.g. QCNNSs)
- 0.6

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on the
-10 quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.
Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J., 2021. Cost function dependent
barren plateaus in shallow parametrized quantum circuits. Nat Commun 12, 1791.

Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M., 2019. An initialization strategy for
p : e addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214.
€ —5.0 -75 10 Skolik, A., McClean, J.R., Mohseni, M., van der Smagt, P., Leib, M., 2021. Layerwise
-10.0 learning for quantum neural networks. Quantum Mach. Intell. 3, 5.

— Optimum model =, "h



Quantum vs Classical:
Will QML give an advantage?

Recent benchmarking show that classical models
outperform quantum models (Bowles, et al, 2024)

Quantum advantage over classical models cannot be
easily verified, and experiments cannot be reproduced!

Dressed models (NNs with a quantum layer) perform well,
yet it cannot be proven it is due to the quantum element

Data re-uploading genuinely improves the quantum
model’s performance

The nature of training data influences quantum models
performance far more than the classical models

Lessons learnt:

- when introducing a quantum method to machine learning, we
need to carefully establish in what way this may alter or benefit
the better established classical approaches

- rather than adapting a classical model, we may need to introduce
a unique quantum approach to model creation and optimisation!

QNNs and QML are still in their early development -
the new field is very exciting and very frustrating!

MLPClassifier |
DressedQuantumCircuitClassifier I
DataReuploadingClassifier |
QuantumBoltzmannMachine |
IQPVariationalClassifier 1
QuantumMetricLearner |
CircuitCentricClassifier |
TreeTensorClassifier '

0 50 100

sSvVC
ProjectedQuantumKernel
IQPKernelClassifier
QuantumkKitchenSinks

ConvolutionalNeuralNetwork
QuanvolutionalNeuralNetwork
WeiNet

number of rankings

(rankings: blue/best to red/worst)

Bowles J, Ahmed S, Schuld M. Better than classical? The subtle art of benchmarking
guantum machine learning models. arXiv; 2024 [accessed 2024 Oct 8]



For PDF of slides and links to GitHub code, see:
https://jacobcybulski.com/ (Presentations menu)

0 u
Model training started

Estimate diabetes progression one year after baseline

0.2452 R2 -3.0295
7 (000189 sec): Loss 8.0971 R2 -8.5967
14 (000354 sec): Loss 0.0596 R2 0.0204
21 (000519 sec): Loss 0.0499 R2 0.1802
28 (000684 sec): Loss 0.8455 R2 8.2517
i i i 35 (000848 sec): Loss 0.0421 R2 08.3077
v —(=HE D (=) D (&) D (&) D (7)) @A Which estimator is better? 42 (001013 sec): Loss 0.0404 R2 0.3354
- = w = w = w = WV Which could still improve? 49 (001178 sec): Loss 0.0388 R2 0.3618
. @ 5 N (&) D (&) D (&) D (& )LD : 56 (001343 sec): Loss 0.0385 R2 0.3669
= &=l = w e p el v 63 (001507 sec): Loss 0.0371 R2 0.3904
= N (=) D (=) M (=) D (=) H H 70 (001671 sec): Loss 0.0359 R2 0.4102
2 AN B ) 1 ¥ Would thIS. Chatgge If(l/jVE} 77 (001835 sec): Loss 0.0347 R2 0.4293
- = ) ) =) were runnin e mode 84 (002000 sec): Loss 0.0349 R2 0.4261
2 C £ C\ = (} = CD " ( P g 91 (002164 sec): Loss 0.0343 R2 0.4368
training on a quantum ;
=/ —/ —/ / 98 (002329 sec): Loss 0.0329 R2 0.4586
. & 4l @ VAR & val & HD & VA ine? 105 (062493 sec): Loss 0.0324 R2 0.4673
% L 5] \y ® N LI % \u macnine:
112 (802657 sec): Loss 0.8333 R2 08.4525
119 (002822 sec): Loss 0.0313 R2 0.4859
devices = cpu + Lightning. qubit device = cpu 120 (s s Lo Lz K2 0.4
- - - - - - - - sec): Loss 0. .
5am|_31c_35 = 296, features =5, params = 75, epochs = 150 sam[.ﬂu.es 296, features = 5, params = 4721, epochs = 1000 120 (803315 sec): Loss 0.0321 R2 0.4727
training: cost = 0.0306 @ 0141, r2 = 0.4977 @ 0141 training: cost = 0.0278 @ 0852, r2 = 0.5147 @ 0852 147 (803479 sec): Loss 0.0308 R2 0.4935
testing: cost = 0.0309 @ 0148, r2 = 0.3891 @ 0148 testing: cost = 0.0304 @ 0980, r2 = 0.4708 @ 0980
elapsed time = 3526sec (00:58:46) elapsed time = 3sec (00:00:03) Total training time: 3526s (00:58:46)
Estimation of diabetes progression Estimation of diabetes progression
0.25 —— Training  —-- Testing — Training  --- Testing
Quantum 0.35 Classical
estimator Estimation of diabetes i estimator Estimation of diabetes progression
05 =0
0.20 0.30 y
o 0.0
a % 2 Classic_Diabetes(
o 2 (model): Sequential( 1
] \ z € 0254 (0): Linear(in_features=5, out_ ¢
E g '8 :1;: ReLU(im(ﬂace:True)1 i %
= 14 3 2): D t(p=0.2, i =F: s -2
8015 N b (5): Linear(in features=sz, out 5
& H 2 020+ (4): ReLU(inplace=True) i
2 s 3 (5): Dropout(p=0.2, inplace=Fal g3
2 N 8 (6): Linear(in_features=64, out s
S = o (7): BatchNorm1d(32, eps=le-05, €
5 S 0.15 A (8): Linear(in_features=32, out =
w 910 ﬁ (9): ReLU(inplace=True)
2 = (10): Dropout(p=0.2, inplace=Fa
(11): Linear(in_features=8, out e
— raiing =~ Testing — Training ==~ Testing
o 20 40 60 80 100 120 140 0.107 o 200 200 500 800 1000
Taining terations s asaons
S . 0.05 4 e e it
0 20 a0 60 80 100 120 140 o 200 400 600 800 1000
Training iterations Training iterations




Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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