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Quantum Neural Networks
Inspired by the brain, executed with lightning speed

Jacob L. Cybulski 
Enquanted, Melbourne, Australia

QNN overview
Building simple QNNs (Q-MLP)
Data encoding strategies
Measurements and their interpretation
Training QNN models
Measuring model performance
Barriers to model learning
Overcoming training difficulties
QNN models vs classical Nns

QCNN, QAE, QGAN, QLSTM, QGNN, QTrans, ...
QNN applications

PennyLane demo
Summary
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Secrets revealed in this session:

To understand the process of 
developing complex quantum 
models

We will assume
some knowledge

of QC and QML plus
Python programming

measurement

Pauli
rotations
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Research
• Quantum computing
• Quantum machine learning
• Quantum time series analysis

and anomaly detection
• Classical machine learning
• Data visualisation

Personal
• Recreational cycling
• Reading science and Sci-Fi
• Quantum challenges and 

hackathons
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Neural Networks
A class of complex ML models

• Multi-Layer Perceptrons (MLP) take numerical 
input and produce numerical output

• MLPs are structured into layers
• Layers consist of neurons
• Neurons hold activation - value in range [-1,+1]
• Weighted links connect neurons of adj. layers 
• Activation is a weighted sum of activations of 

neurons from the previous layer
• Bias is a value added to the sum
• Activation function is applied to the sum to scale 

the result back to the interval [-1, 1]
• Optimisation is the process to identify optimum 

weights and biases, it is commonly iterative
• Optimisation aims to reduce cost or aggregated 

loss, a distance between the calculated and 
expected results 

• This process can be accelerated by using 
specialised hardware, e.g. GPUs or TPUs

• Other NNs: CNN, AE, GAN, LSTM + QNNs
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MLP = a simple neural network
capable of learning any “smooth” function

learns to associate inputs with outputs
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Recommended reading
on QNN + Deep Learning

Chapter 10: QNN

Classical Neural Networks / Deep Learning

QNN in JuliaVariety of QNN Types

Neural Networks
Fathers
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Quantum Neural Networks
Specifically Quantum MLPs

● The QNN variational model is typically represented by 
a quantum circuit of three components, i.e.

➔ feature map encoding QNN’s classical input data 
and preparing the circuit’s quantum state

➔ ansatz consisting of several layers of trainable 
parameters (Pauli rotations), responsible for 
quantum state processing and transformation

➔ measurement of the circuit’s quantum state, 
which can subsequently be interpreted as QNN’ 
classical output

● QNNs can be trained with variational quantum 
algorithms and a wide range of classical optimisers.

● Pure quantum training strategies are also possible.

QNNs
● can deal with highly complex computation (as QM)
● can deal with large volume of data (as NN)
● can process entire probabilistic distributions of 

values (superposition) and utilise parameters space 
of exponential size (entanglement)

● require repeated execution to produce output
● are missing some efficiency of classical NNs

(non-linear activations and regularisation strategies)
● are difficult to process on quantum simulators of 

limited computational capacity
● need experimentation and extensive data 

preparation – there is no magic in quantum tech!

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, 
and Stefan Woerner. “The Power of Quantum Neural Networks.”

Nature Computational Science 1, no. 6 (June 2021): 403–9.
Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020.

Sample Ansatz (Processing)As per a VQA Model Sample Measurement (Output)Sample Feature Map (Input)
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Data embedding:
Basis encoding and decoding 

Basis embedding is the commonly used 
strategy for quantum encoding and decoding 
of integer numbers, where:

● qubits act as bits of the encoded numbers
● circuit state can be interpreted as bits of 

the numeric value on output
● application needs a single (or very few) 

integer value on input and output

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.  
http://link.springer.com/book/10.1007/978-3-030-83098-4.

U

Encoding and 
measuring number 11

There are many different approaches to quantum data encoding 
and decoding that are suitable for QNN, e.g. basis, angle and 
amplitude embedding.
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Data embedding:
Angle encoding and decoding

Angle embedding represents numeric values as properties 
of qubit state rotation (angle, amplitude or probability)

The rotation operators are the basic quantum operation

Encoding rotations are performed around x, y, z axes of the 
Bloch sphere (multiple values per qubit are possible)

Rotations are relative to a specific qubit state, e.g. |0⟩
Input encoding can be repeated across the circuit, called 
reuploading, which improves the model performance

As training will place qubit states in areas x < 0 and around 
the z axis, measurements may not distinguish these states 
from “pure” x > 0 and z = 0.

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

Input
Values entered: [np.arccos(0.5), np.arccos(0.75), np.pi-np.arccos(0.5)]
Ry angles used: [1.047, 0.723, 2.094]

Measurements
Probabilities:  [[0.25, 0.75], [0.562, 0.438], [0.25, 0.75]]
Amplitudes:     [0.5, 0.75, -0.5] x

z

|1⟩

|0⟩

[-pi/2..0)

(0..+pi/2]

Ry(+α)

Ry(+β)
y

[0]

+a

-b

Rotation relative to 
|0⟩ initialisation

Rotations were relative to 
|0⟩ initialisation
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Data embedding:
Amplitude encoding and decoding

Amplitude embedding is one of the most useful 
encoding / decoding strategies

Unless supported by the quantum platform, it is 
considered the most difficult (see Sutor 2024)

In amplitude encoding, each data point is 
encoded as expectation value of multi-qubit 
measurement of all qubits’ states

This way, we can embed 2qubits numbers 
into a circuit!

Sutor, R.S., 2024. Dancing with Qubits, Second Edition. Packt Pub.

Maria Schuld and Francesco Petruccione. 
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.  

http://link.springer.com/book/10.1007/978-3-030-83098-4.

Consider a vector:   v = [0.1, -0.3, 0.5, 0.4, 0.2],
which needs to be normalised by the vector length:   sqrt(0.12+(-0.3)2+0.52+0.42+0.22], 
which results in a new vector (approximately):   v’ ≈ [0.13484 -0.40452  0.6742   0.53936  0.26968]. 
To encode 5 amplitudes in a quantum circuit, we need at 
least 3 qubits. Thus, resulting in the following encoding:

We will rely on PennyLane and Qiskit to generate quantum 
gates for this circuit ...

U

There are many other 
methods of data 
encoding, e.g. QRAM, 
time-evolution, or dense-
angle, or Hamiltonian 
encoding.

Many of these methods 
are offered as ready-
made feature maps.

Qiskit feature maps 
include:

● ZfeatureMap
● ZZFeatureMap
● PauliFeatureMap
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Commonly used
measurements and interpretation

There are many ways of obtaining the outcome of a 
circuit execution, e.g. we can measure:

● all qubits (global cost)
● a few qubits (local cost)
● groups of qubits
● as counts of repeated measurements
● as probabilities of |0⟩ and |1⟩
● as expectation values, P(0)-P(1)
● as variance, etc.

or

or

Repeated circuit measurement can be interpreted as 
outcomes of different types, e.g. 

● as a binary outcome:
single qubit measurement 

● as an integer:
multi-qubit measurement 

● as a continuous variable:
expectation value of a specific outcome

Circuit state measurement has an impact on the 
calculation of the loss/cost function

integer logical

float

Probability distribution of measurements can be further interpreted, e.g. we 
could check parity of the probability kets (e.g. |110⟩ is even, while |111⟩ is odd), add all even and odd probabilities respectively, and treat the result as a logical measurement.

variable a

variable b

global cost local cost

Model measurement and interpretation of results share their 
fundamental concepts and methods with data encoding.
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Training of Quantum Neural Networks

● QNN training needs a loss / cost function 
and an optimiser of the model parameters

● The loss function and optimiser can either 
be pure quantum or hybrid

● Pure quantum approach often relies on 
quantum adiabatic  or quantum annealing 
optimisation, and Grover-like amplitude 
amplification

● A hybrid approach uses variational 
quantum algorithms (VQA), and relies on 
the QNN execution on a quantum machine, 
and its parameters optimisation conducted 
on a classical machine

● Hybrid training of QNNs is
identical to training classical NN models

Trainableansatz Measurements

EncodedData

ze
ro

Measuredresults

Model training by presenting pairs of input and output examples

Optimisationof ansatzparameters
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Optimisation example
Gradient descent

Consider the house price (y) as a function of the 
size of its front yard (x). Let us consider all models 
(fa,b) to estimate the house prices by the formula:

Each model is parameterised by a and b, and can 
fit a sample A={x, y} of house training data (Ames 
real estate).

For each house (x, y), a model fa,b will make some 
error (loss). For all houses in A it will accumulate 
these errors as a single value (cost), e.g. MAE 
(mean absolute error).

By using gradient descent, the 
optimum cost (and thus the 
model), was found at:

A=1060 (Lot_Frontage)

B=90000 (Intercept)

MAE=53473.097 (Error)

a

b

MAE

optimum params
at min(MAE)

We can start at any point
 on the cost surface given

 by a, b and MAE
We then search for

 the optimum model
by walking down the

steepest slope,
this is called:

gradient descent

The optimiser controls this 
process via its hyper-parameters, 

i.e. parameters of the
gradient descent itself:

learning rate
momentum

decay
epsilon

x

y

fa,b(x) = 2,100 * x + 120,000

The cost of each 
model is a point in a 
3D space

a x b x MAE

All such points form 
a “cost” surface.

The shape of such a 
surface we call the 
cost landscape.

When a model has 
many parameters, 
the cost surface is 
called a hyperplane.

What if we wanted to use a 
model of this type: 

ha,b,c(x, y) = a*x2+b*y+c

y = fa,b(x) = a * x + b

cost
hyperplane

Now we will look for the best model, i.e.
the model which generates the lowest MAE

To find the best m
odel, w

e could 
com

pute all possible m
odels and their 

cost, how
ever this is not feasible - too 

m
any param

eters!

descend with 
momentum

gradient
descend

epsilon
decay

initial
params

LR
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Measuring QNN “quality”
An area of Jacob’s research

● The common way of measuring QNN quality is to 
measure its ability to generalise beyond training data. 

● This can be assessed by using separate data sets, i.e. 
validation and test data, as well as some metric, e.g. 
MSE, MAE, accuracy, cross-entropy, etc.

● At different points in training, we could also measure the 
model capacity:

➔ storage capacity measured in bits and bytes of information 
(Little and Shaw 1978, Newman 1988)

➔ network potential for storing input-output patterns (Gardner 
and Derrida, 1988, Gardner, 1988)

➔ requisite complexity as the ability to accurately 
approximate a given function (Hornik, 1991)

➔ optimal brain damage as the ability to accommodate 
removal of  parameters without adversely affecting 
information contents (LeCun et al., 1989)

➔ capacity to learn as the ability to generalise from the 
previously learnt training data

● Capacity to learn has been explored and formalised in 
a number of different ways:
➔ VC-dimension as the set of functions the neural network 

could represent depending on the size of the training set 
and its tolerance for the error rates (Vapnik and 
Chervonenkis, 1971)

➔ effective VC-dimension which takes into account not only 
the size of the training data and error rates, but also the 
probability distribution of its measurements (Vapnik, Levin 
& Le Cun, 1994)

➔ volume of the cost gradient geometry emerging from the 
network's optimisation, and which can be defined using 
Fisher Information Matrix (Karakida, 2020)

➔ the number of independent pure quantum states 
that can be represented (Lewenstein et al, 2021)

➔ effective quantum dimension as the relationship between 
the model geometry, expressive power and redundancy, 
effectiveness of its training and initialisation strategy 
(Abbas et al, 2021) 

Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., Woerner, S., 2021. 
The power of quantum neural networks. Nature Comput Sci 1, 403–409.
Abbas, A., Sutter, D., Figalli, A., Woerner, S., 2021. 
Effective dimension of machine learning models, arXiv:2112.04807.
Cybulski, J.L., Nguyen, T., 2023. Impact of barren plateaus countermeasures on the 
quantum neural network capacity to learn, Quantum Information Processing 22, 442.
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Barren plateaus
An area of Jacob’s research

● QNNs have similar training difficulties as Nns
● BPs are related to vanishing gradients in NNs 
● BPs presence does not mean the model is bad, 

its training is just more difficult
● BPs are the natural feature of measurements in 

high dimensional space of model parameters
● BPs do not just “exist”, they emerge in training
● BPs are commonly flat, however, their surface 

may become rough and bumpy due to noise
● BP countermeasures can make your model worse
● There exist well-known causes of BPs and

there are well-known BP countermeasures, e.g.

1) use fewer qubits / layers / parameters
2) use local cost functions
3) beware of random params initialisation
4) use BP-resistant model design (e.g. layerwise)
5) use BP-resistant models (e.g. QCNNs)

Cybulski, J.L., Nguyen, T., 2023. “Impact of barren plateaus countermeasures on the 
quantum neural network capacity to learn”, Quantum Inf Processing 22, 442.

Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J., 2021. Cost function dependent 
barren plateaus in shallow parametrized quantum circuits. Nat Commun 12, 1791.

Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M., 2019. An initialization strategy for 
addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214.

Skolik, A., McClean, J.R., Mohseni, M., van der Smagt, P., Leib, M., 2021. Layerwise 
learning for quantum neural networks. Quantum Mach. Intell. 3, 5.

Potential BP &
Training difficulties

Optimisation path 

Optimum model 

Optimisation
opportunity 

Very bumpy
plateau

C
o

st

Barren plateaus (BPs) are large “flat” areas in the quantum 
model’s cost landscape, which impede model optimisation.
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Quantum vs Classical:
Will QML give an advantage?

● Recent benchmarking show that classical models 
outperform quantum models (Bowles, et al, 2024)

● Quantum advantage over classical models cannot be 
easily verified, and experiments cannot be reproduced!

● Dressed models (NNs with a quantum layer) perform well, 
yet it cannot be proven it is due to the quantum element

● Data re-uploading genuinely improves the quantum 
model’s performance

● The nature of training data influences quantum models 
performance far more than the classical models

● Lessons learnt:
– when introducing a quantum method to machine learning, we 

need to carefully establish in what way this may alter or benefit 
the better established classical approaches

– rather than adapting a classical model, we may need to introduce 
a unique quantum approach to model creation and optimisation!

● QNNs and QML are still in their early development - 
the new field is very exciting and very frustrating!

(rankings: blue/best to red/worst)

Bowles J, Ahmed S, Schuld M. Better than classical? The subtle art of benchmarking 
quantum machine learning models. arXiv; 2024 [accessed 2024 Oct 8]
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Demo: 
Estimate diabetes progression one year after baseline

Quantum 
estimator

For PDF of slides and links to GitHub code, see:
https://jacobcybulski.com/  (Presentations menu)

Which estimator is better? 
Which could still improve?

Would this change if we 
were running the model 
training on a quantum 
machine?

Classical 
estimator
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Thank you!

Any questions?

Enquanted is being somewhere in-between Enchanted and Entangled

Photos from Unsplash

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.

ND: No derivatives or adaptations of the work are permitted.
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