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What is QML?

QM
Quantum Maths Maths &
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QC ML
Computer
Science

Quantum Machine Learning:

a discipline seeking to take advantage of quantum
mechanical processes to induce or enhance
machine learning

QML combines in novel ways the concepts and
methods adopted from:

*  Quantum Computing (QC)
* Machine Learning (QC)
*  Quantum Mechanics (QM)

QML exploits unique properties and behaviour of
guantum systems to improve computation, due to:

Superposition and entanglement

Exponential size of the quantum state space
Linearity of quantum models

Reversibility of unmeasured quantum models
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Chemistry

Company: Mitsubishi, IBM, and
partners, 2021

Platform: IBM quantum machine

with Qiskit and Quantum Chemistry
toolkit

Aim: increase efficiency of
Organic Light Emitting Diodes
(OLED) to 100% (now only 25%).
Results: Predicted exact
properties of OLED materials to
improve efficiency.

Distance {km}

Three Selected Applications

Weather Radar

Company: Rigetti, 2021

Platform: Rigetti guantum machine
with Quil, using a QNN.

Aims: synthetic weather radar
images, produced without radar.

Results: A hybrid classical-quantum
storm prediction — an improvement
over classical machine learning.
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For more recent examples, see:
Olivier Ezratty, 2024. Understanding Quantum Technologies, 7th ed.
Le Lab Quantique. URL: https://www.oezratty.net/

Finance
Company: Accenture, 2021

Platform: D-Wave quantum machine with
Leap, via AWS Braket

Aim: to minimise the difference between the
target and the final portfolio while maximising
the return, using data from Yahoo Finance.

Results: Working portfolio rebalancing system.




The wheel of
QML applications

Organisations & Society

Finance /
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e Other Platforms | Q-SDKs
QML platfo ms I SDKS Classiq / Classiq, Forest / Rigetti, Ocean / D-Wave,

Quantum Development Kit with Q# / Microsoft,

Qiskit, PennyLane, Cirq, Yao, ... cuQuantum / Nvidia, tlket>/ CQC
* Qiskit (OS) * PennyLane (OS)
2 Location: USA 2 Location: Canada
2 Language: Python 2 Language: Python
2 Company: IBM Research 2 Company: Xanadu
2 Backends: IBM, AQT, IQM, Rigetti, Quantinuum 2 Backends: Xanadu, AQT, lonQ, Rigetti, Honeywell
2 Models: VQC, VOR, QNN, QCNN, QSVM, 2 Models: QONN, Q Kernels, QFT, QAOA
QGAN, Q Kernels, VQE, VQLS, QFT, QAOA
2 ML SDK: Scipy, PyTorch, Tensorflow 2 ML SDK: PyTorch, Tensorflow
2  Apps: QML, Finance, Optimization, Nature 2 Apps: QML. Optimization, Chemistry
* Cirq (0S) *  Yao (0OS)
2 Location: USA 2 Location: China/ Taiwan
2 Language: Python 2 Language: Julia
2 Company: Google Quantum Al 2 Company: QuantumBFS
2 Backends: Google, AQT, lonQ, Pasqgal, Rigetti 2 Backends: Simulators, via Python
2 Models: VQE, QAOA, via TF Quantum (QNN, 2 Models: VQE, many others via Julia (Flux)
QCNN, QRNN, QGNN, QGAN, QRL, Q kernels) 2 ML SDK: via Julia/Python (scipy, sklearn, Tensorflow)
2 ML SDK: PyTorch, Tensorflow 2> Apps: Via Julia (QML, Al, Optimization, Physics,
2  Apps: QML, Chem, Materials, Comms, Metrology Chemistry, Biology, Earth, Finance, Robotics)



Variational Quantum Models =

Parameterised Circuit Templates Classical
output data
>
Quantum registers (qubits) Feature Map Ansatz Measurement + :n
initialised to |0) \\ Encoding classical input data -~ _ Processing quantum info interpretation
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Classical registers /
with outputs measured as 0 or 1

Typically, the circuit consists of three blocks:

* afeature map (input)
encodes classical data as circuit state

Data and operations are hard-coded -+ an ansatz (processing)
alters circuit state

Quantum circuits are static

New data / operation params — new circuit
° measurements (output)
measures circuit state into classical data



Variational Quantum Algorithm

VQA is an iterative process

VQA uses cost/loss function and optimiser
VQA has difficulties:

The problem at hand

Large circuits with many parameters
Complex measurement strategy
Unsupervised learning

Emergence of barren plateaus

|

|

|

|

:

|
Encoded v
Data

The feature map parameters are bound to the new input data

A typical VQA process

The ansatz parameters are initialised
to some values, e.g. zero or random

The parameter values are used to create a new circuit

The circuit is executed

The circuit quantum state is then measured

Cost function is applied to

measurement results and expected values

Optimisation

The cost of difference is calculated

Based on the difference and previous
parameters the new parameters
values are proposed —

zero

i i | ofansatz  ~ - 7

| | | parameters !

| | | |

| | | !

| | |

Measured

v v v Measurements results

&) @)

Trainable
ansatz
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Ansatz design and optimisation

A simple quantum classifier to start with...

input rotation entangling rotation entangling rotation  entangling rotation  entangling rotation  entangling
block  block block block block block block block block block block  measurements
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feature maps vary in: different cost functions:

structure and function
ansatze vary in: alter qubit states

ansatz layers consist of:
rotation blocks and entangling blocks

R2, MAE, MSE, Huber, Poisson, cross-entropy,
hinge-embedding, Kullback-Leibner divergence

rotation gates

around x, Y, z Pauli _ s
width (qubits #) axes rotations different optimisers:
depth (layers# | - gradient based (Adam, NAdam and SPSA)
dimensions (param #) . —— ’ linear approximation methods (COBYLA)
stucture (e.g. funnelling) -~ | T non-linear approximation methods (BFGS)

entangling (circular, linear, sca) t and optimisation depend on
cost and optimisati :
task, ansatz design, measurement strategy,

of R(x, y, z) and CNOT gates training data and platform



From the lab to the world?

An area of Jacob’s research

a story of one quantum TS analysis model...

Sliding Window
QNN

Synthetic data

- worked well only
for simple data sets

Sliding Window
Serial Model

Real-world data
beer sales in USA

- the model failed
completely!

fiX(n)d

Original function vs fit and predictions

Synthetic data
over 100
o experiments

=
:

02

XD

00

02

- . . . Ready for the "
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T i data?
Tuth  —— Validation

Original function s fit and predictions

Synthetic data
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Index n

Tuth — Faining
Tuth  —— \alidation

Original function

US beer sales (IRI)
.5/ real-world data

ep—
)

noise (data="beer", samples=160, window size=8, step=4)

| US beer sales (IRI)
i real-world data

e
o
Target value

bl
Index n

—— Train Pure
~—— Valid Pure -~

©  Train Recovered from Noise
o Valid Recovered from Noise

Train Noisy
Valid Noisy

500 more
Futh  — TFaining -
Tuth — Validation eXperI m entS a8

20 40 60 80 100 120 140 160
Range

Sliding Window
Serial Model

Synthetic data

— good prediction of
both seasonality and
the signal amplitude.

Sliding Window
Serial Model

Real-world data

500 experiments with
varying parameters +
changes to the model +
cost fun and optimiser +
changed the platform to
PennylLane —

good prediction +
noise elimination
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Q A E fo r I I m e S e r I e S 56 Training: original vs recovered from noise (data="2sins", samples=160, window size=8, step=4)
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Olivier Ezratty, Understanding Quantum Technologies, 7th Ed (2024)

Maria Schuld and Francesco Petruccione.
Machine Learning with Quantum Computers. 2nd ed. Springer, 2021.

QML

advice on model development Stop developing

Start reusing!
Try existing QML models and algorithms:

Experiments:

perform experiments with different platforms, architectures, cost
functions, optimisers, with multiple approaches to model
initialisations

Data encoding and decoding:

ensure they are consistent, also in terms of the adopted approach
to measurements and their interpretation

design methods of measuring and interpreting model’s quantum
state,as they are essential for model training and testing

Ansatz architecture:

plan the ansatz circuit width, depth, the number of layers and
trainable parameters, extra degrees of freedom (extra params),
as they all determine the model performance

Statistics:

collect stats, average performance and deviations, plot results to
compare models, also against equivalent classical solutions, in
model training, validation and testing

Process:

just because you are using quantum computing methods, it does
not mean you can skip the traditional data science diligence and
good software development practices - just the opposite!

Quantum Neural Networks (QNN, VQC/R, QCNN, qGAN)
Quantum Kernel Methods (Feature Maps, Estimators)
Quantum Optimisation Algorithms (QAOA, QUBO)
Quantum Support Vector Machines (QSVM, QSVC/R)
Quantum Clustering Algorithms (QCA k-NN, DQC)

Quantum Fourier Analysis (QFT, QFFT)

Quantum Sequence Models (QRNN, QLSTM, QGRU)
Quantum Annealing / Quantum Adiabatic Algorithm (QAA)
Quantum Boltzmann Machines (QBM, QRBM))

Quantum Principal Components Analysis (QPCA)
Quantum Self-Attention and Transformers
Quantum Random Forest (QRF)

Quantum k-Nearest Neighbour (QkNN)

Quantum Hopfield Associative Memory (QHAM)
Quantum Reinforcement Learning (QRL)
Quantum Bayesian Modelling (QBN, QBC, QBNN)
Quantum Genetic Algorithms (QGA)



One of the issues found in Qiskit:

* the lack of quantum models’ transparency which
hampered the performance of gradient optimisers

Solution - PennyLane / PyTorch, with:

* hybrid models of quantum / classical components

* parameters structured into layers, trained very
efficiently with gradient optimisers

Technologies alternative to quantum:

* GPU and TPU accelerators

* hybrid quantum-classical solutions

* guantum inspired models

e tensor networks

* neuromorphic and neuro-inspired systems

Alternative Technologies

Accelerators, Hybrids, Tensor Networks, Brain-Inspired Systems

Ansatz XYZ

PennyLane/

PyTorch

approach to model
development
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PennylLane / PyTorch Neural Network

of classical and quantum components
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Demo:

Automotive insurance risk assessment (quantum classification)

For PDF of slides and links to GitHub code, see:
https://jacobcybulski.com/ (Presentations menu)
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g Egggggz Se‘:;: ::OSS 0 764; icc gig;g Classification of car insurance risk

sec): Loss 0. cc 0.

8 (000062 sec): Loss 0.5765 Acc 0.4672 i

12 (000089 sec): Loss 0.4288 Acc 0.4672 Gl

16 (000116 sec): Loss ©0.338 Acc 0.4672

20 (909144 SEC): Loss 0.2746 Acc 0.4745 Training MSE cost vs iteration with smoothing

24 (000171 sec): Loss 0.233 Acc 0.5693 o 10

28 (000198 sec): Loss 0.2126  Acc 0.6715 g 971

32 (000226 sec): Loss 0.1947 Acc 0.7226 E 08

36 (0OA253 sec): Loss 0.182 Acc 0.7737 ¥ 5

40 (000280 sec): Loss 0.1784 Acc 0.7883 S 061 9"

44 (000307 sec): Loss 0.1704 Acc 0.8102 z EM

48 (000335 sec): Loss 0.1631 Acc 0.8175 E '

52 (800362 sec): Loss 0.1621 Acc 0.8175 = 45 02

56 (000389 sec): Loss 0.1589 Acc 0.8102

60 (000417 sec): Loss 0.1522  Acc 0.8321 T et et ooz @ e 0

64 (000444 sec): Loss 0.149 Acc 0.8467 | deem™ e

68 (000471 sec): Loss 0.1473  Acc 0.8248 “1 e e — e

72 (000499 sec): Loss 0.1428 Acc 0.8321 ;3 8 %5 = i e Fa , 5

76 (@0@525 SEC}: Loss 0.1449 Acc 0.81602 Training iterations.



Any questions?

This presentation has been released under the
Creative Commons CC BY-NC-ND license, i.e.

BY: credit must be given to the creator.
NC: Only noncommercial uses of the work are permitted.
ND: No derivatives or adaptations of the work are permitted.
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