
  

The Art of Data Encoding and Decoding
for Quantum Time Series Analysis

Sample PQFT reuploading serial model
Actual model: 1 qubit, 27 layers, 84 weights

Oscillation data favors PQFT models!

Sample PQFT reuploading parallel model
Actual model: 5 qubits, 3+3 layers, 120 weights

Sample SW QNN model (shows the ansatz wider than the fm)
Actual model: 9 qubits, 5 inputs, 1 fm + 5 ansatz layers, 162 weights

Sample QTSA uni-variate overloading model (shows 1 layer of 2 blocks)
Actual model: 3 qubits, 2 layers of 2 encoding blocks each, 90 weights

Considered data encoding approaches

Abstract: Time series (TS) feature unstructured data and unique processing, 
thus, they do not easily fit conventional approaches to quantum modelling. 

This project thus investigated various approaches to encoding and (in part) 
decoding of time series data to support quantum time-series analysis (QTSA), 
which relied on curve-fitting and forecasting with sliding-windows (SW). 

As each approach has the potential to enhance or impede the model’s ability 
to represent and manipulate data, this project therefore compared the 
selected approaches and evaluated their performance using a noise-free 
quantum simulator. It did not seek quantum advantage of these methods.

The best models used similar methods of training and the same data 
decoding: with all n qubits measured and using (“Z”*n, 1.0) observables.

PQFT serial reuploading model: This is a curve 
fitting model mapping x to the value of f(x). 
It implements Partial Quantum Fourier Transform on a 
single qubit. The model parameters are state rotations 
(Rx, Ry, Rz). Input data, angle encoded with Rx, is 
being serially reuploaded between parameter blocks.

PQFT parallel reuploading model: This is a curve 
fitting model mapping x to the value of f(x). 
It implements PQFT on multiple entangled qubits. 
It is often claimed to be an improvement over PQFT 
serial models. Its data block reuploads input to each 
qubit in parallel, and is surrounded by multiple layers 
of (Rx, Ry, Rz) parameters and entangling blocks.
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All models were tested in a 
variety of configurations

PQFT serial models performed 
closest to the level of classical NNs. 
They fitted “oscillation” data with 
very high level of accuracy.

Synthetic “oscillation” data with 70 samples:
f(x) = (sin(5x) + 0.5*sin(8x)) / 4 + 0.5

SW QTSA overloading model: A forecasting model, 
with sliding-window of size 5, and horizon of 1. The 
model consists of multiple layers, each reuploading a 
TS window into a series of encoding blocks. The 
blocks overload qubits with different window parts. 
The approach fuses PQFT ideas with the SW QNN 
model. This model can also encode multi-variate TSs.
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PQFT parallel models failed to 
improve on the performance of their 
serial counter-parts. Also, their TS fit 
could not excel the fit of other TS 
models. Due to the large number of 
parameters needed, their training 
was very very slow.

The SW QTSA performance was 
second best in training and testing. 
Many experiments were needed to 
identify the best model, especially in 
the design of quantum observables.
Due to qubit overloading, the 
number of qubits was reduced. 

SW QNN standard model: A QNN forecasting model, 
based on a sliding-window of size 5, and horizon of 1. 
It has a feature map and an ansatz of (Rx, Ry, Rz) 
state rotations. An ansatz can add extra width to the 
circuit. When using an amplitude encoding, the 
number of qubits drops to log2 of data features. In 
angle- or phase-encoding (as in ZZ feature maps), the 
model requires as many qubits as the window length.

When adding weights, SW QNNs 
training and the ability to generalise 
improved. As amplitude encoding 
varies the model structure with data,  
model training with GPUs/QPUs was 
not possible. ZZ-fms were used 
instead, esp. that the circuit needed 
extra weights by increasing its width. 

PQFT and SW models used the same data, but of different structures and size. 
They can only be compared with R2 scores, within their groups also MAE. 
By test R2, serial PQFTs performed best, SW QTSA and QNNs were on par.

Conclusions: This project explored the impact of 
data encoding strategy on QTSA models. Heavily 
parameterised models that used data reuploading 
performed well in scoring and qubit utilisation. 
To our surprise, 1 qubit PQFT serial models were the 
best performers. SW QTSA and SW QNNs performed 
equally well in testing, SW QTSA were more qubit 
efficient. SW QNNs benefitted from extra circuit width. 

A classical NN model was also 
developed. The model had a huge 
number of parameters, however its 
training was very quick. 
The model performance was the 
best and was therefore used to 
benchmark the quantum models.

Platform: Ubuntu 22.04, Python 3.11, Qiskit 1.2.4, QML 0.7.2, Aer-gpu 0.15.1
All models: EstimatorQNN + NNRegressor, 1-2 observables, Optimiser: L_BBFGS_B + L2Loss

This chart shows average of overlapping windows

This chart shows average of overlapping windows

This chart shows average of overlapping windows

Sorted by test scores.
Epochs @ best test MAE.
In SW models,  scores 
compare  expected vs 
predicted window values,
with overlapping window 
averaged by TS position. 
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