
This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 1

Reuse in the Eye of Its Beholder:
Cognitive Factors in Software Reuse

Jacob L. Cybulski
Department of Information Systems

The University of Melbourne
j.cybulski@dis.unimelb.edu.au

Abstract

In this paper we investigate the impact of human cogni-
tion on developers ability to effectively reuse software
artefacts. We look at the cognitive impediments to and
furtherance of software reuse. We review the computing
models of human knowledge and reasoning which may
assist in the emulation of our abilities to reuse software.
Finally we investigate the possibility of integrating human
and machine capabilities to arrive at the efficient method
of software reuse.

1. Introduction

As software reuse provides visible gains in productivity,
reduced cost, improved reliability and enhanced quality of
software products [14, 27], new techniques and methods
are created to equip various professional groups with spe-
cialised tools to classify, find, select and adopt software
artefacts used and produced in the development process.
So, we find analysts producing requirements documents
with the use of pre-existing domain models [4], designers
reusing abstract program components to produce new
system designs [16, 21, 30], or programmers assembling
code from previously written parametrised functions, tem-
plates or object classes [7, 13, 29]. Different developer
groups have different tasks to perform and goals to
achieve, they use variety of notations, techniques and
tools, they deal with distinct types of software artefacts,
and apply different classes of knowledge and skills in their
problem domains. And yet, they are all able to reuse the
results of their own effort, they are capable of retracing
and repeating common procedures leading to the produc-
tion of artefacts within their domain of expertise. Moreo-
ver, they apply noticeably similar approaches to the reuse
tasks. This means that, perhaps, the secret to the success or
failure of software reuse lies not in the type and form of
artefacts being produced nor in the methods and tech-

niques required in their construction, but rather, in the
nature of expert minds put to work on the reuse process.

People are an essential ingredient of the software de-
velopment life-cycle. Managers instigate development of
software projects; they set goals to achieve and control the
progress of software project. Analysts communicate with
the users to elicit and specify requirements; designers use
their creative skills to convert requirements specifications
into software solutions; programmers rely on their knowl-
edge and experience to encode the designs into executable
programs; and finally operators interact with the installed
software. These acts of decision making, control, commu-
nication, creativity, application of knowledge and experi-
ence, and man-machine interactions make humans indis-
pensable in the software development process. At the same
time, however, it is this human factor that is also regarded
as the main source of incompleteness, inconsistency and
imprecision infused into the software products.

2. Impediments of human cognition to effec-
tive reuse

Sommerville [25, ch. 2] identifies several human factors
commonly regarded as detrimental to the software devel-
opment process, i.e.

• human diversity which makes it difficult to match em-
ployees with their particular work duties,

• team work which can be riddled with problems due to
group dynamics, inadequate organisation, bad team
communication or misperceived loyalties,

• ergonomics of the workplace which may lead to re-
duced productivity of software developers due to the
lack of privacy, awareness of the outside world, or per-
sonal touch;

• human cognition which may hamper development
efforts due to limitations of cognitive resources, inade-
quate modeling abilities or ineffective reasoning.

This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 2

The issues of human diversity, team organisation and work
ergonomics can certainly be addressed by appropriate
management practices [14, 27]. The problems of human
cognition are more complex to deal with and cannot be
completely resolved by improved team structuring, refined
work organisation, better planning and monitoring proce-
dures, or the introduction of training.

Human memory is one of the main causes of inade-
quate reuse performance of software developers [8]. The
long-term memories of software artefacts are formed of
great many partial descriptions, they are fuzzy and impre-
cise, and are subject to temporal instability and misinter-
pretation. The short-term memory is used for temporary
storage of problem descriptions, past solutions and meth-
ods of their reuse. It is also of a very limited capacity, it
can hold only up to seven items of information at any
point of time, and, unless it is constantly refreshed, it de-
cays in less than half a minute. At the same time various
processes controlling our perception and reasoning con-
stantly compete and interfere with one another due to lim-
ited resources for analysing problems and their character-
istics to establish the similarity between the new and the
previously solved problems [5].

Deficiencies in human cognition are frequently quoted
as the source of various problems specifically affecting
software reuse. The most prevalent, especially amongst the
less experienced developers, include [8] :-

• tendency to force new problems to fit existing solu-
tions;

• difficulty in identifying similarity of concepts, prob-
lems and solutions across different problem domains;
and

• inclination to the routine use of problem solving for-
malisms even if they may not be appropriate for the
problem at hand.

Inexperienced programmers also tend to :-

• concentrate on the superficial or lexical properties of
reuse artefacts while neglecting their semantic features
[26];

• elaborate their designs in a depth-first fashion, thus,
discounting reuse opportunities at a single level of
software abstraction [2, p 257];

• have very poor abilities to develop and memorise new
programming constructs, hence, they display difficul-
ties in associating known program solutions with the
new problems [2, p 258-259].

Expert programmers, as compared with junior program-
mers, have a much better memory for programs, they are
able to mentally develop program templates and to match
them with programming goals [2, p 259]. Experts also
tend to develop and use jargon which reminds them of
important programming constructs and enables the pro-

grammer to more economically represent and think about
program plans. Unfortunately :-

• all developers, whether experienced or inexperienced,
exhibit mental laziness when it comes to reusing arte-
facts and attempt copying reusable components rather
than to reason about their suitability [26].

It seems that to achieve high quality and performance of
the reuse process, the tasks involved cannot be left entirely
to human endeavour. Computer-assisted reuse may be the
only option to successfully defeat the shortcomings of the
human condition.

3. Benefits of human cognition in software
reuse

For years various studies were conducted to determine the
cognitive behaviour of programmers [23], designers [15]
and analysts [28]. Only recently, the efforts were also di-
rected towards measuring the performance of software
reusers [8, 19, 24, 26]. What transpires through some of
these studies, is the realisation that effectiveness of soft-
ware reuse practices, as performed with modern software
development technology, finds its source in the intuition,
insight, and inventive abilities of managers, analysts, de-
signers and programmers, rather than in the technical sup-
port from specialised reuse tools and environments. In
particular, it is recognised [20] that the performance of
computer-based reuse systems as applied to certain reuse
tasks does not measure up to the results obtained from the
performance of human experts, e.g. in problem descrip-
tion, components understanding, their selection, adapta-
tion and generalisation.

To combat both machine and human deficiencies,
Maiden and Sutcliffe [20] postulate tight integration of
human and machine participation in the reuse process and
they propose the construction of tools not only supporting
software engineers in their reuse tasks but also utilising
humans as an additional source of knowledge and exper-
tise in the process of computer-aided reuse. Unfortunately,
few reuse mechanisms furnish such integration of machine
and human expertise.

4. Cognitive tasks in software reuse

Automating those of the human natural abilities which
facilitate successful software reuse requires careful analy-
sis of all mental faculties invoked in the tasks of a typical
reuse process. To achieve this understanding, we will ex-
tend the earlier work on the psychology of computer pro-
gramming [23] and compare the tasks invoked in the reuse
process with the cognitive phenomena of human memory
and reasoning [2, 3, 12, 17, 18, 22]. To this end, we will
consider the two components of the software reuse model,
as consisting of development-for-reuse (construction of

This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 3

artefact library) and development-by-reuse (use of artefact
library) [1, 6, 9], as identical with two complementing
cognitive tasks of memorising and remembering informa-
tion about reusable artefacts.

We will match the tasks of development-for-reuse, i.e.
identification, understanding, generalisation, classification
and storage of information about reusable components,
with the respective cognitive processes of perception, con-
ceptualisation, generalisation, categorisation, and memo-
rising. At the same time, we will try to explain develop-
ment-by-reuse, i.e. searching, retrieving, understanding,

adaptation and integration, with the cognitive phenomena
of memory activation, recall, choice, and reasoning. Our
comparison (see the summary in table 1) will allow us to
consider the methods of representing information about
reusable artefacts and to conceive the techniques of ma-
nipulating such representations to aid the mental and man-
ual tasks of a software reuser.

4.1 Development for reuse

Let us start with the process of software development-for-
reuse, in which developer's memory and learning abilities
facilitate identification, generalisation, classification and
storage of information about reusable software artefacts.

Identification. Identification of reusable artefacts in
the existing software requires developer's ability of per-
ception, which in humans normally involves feature de-
tection and analysis, pattern recognition, feature chunking,
Gestalt effects and focus of attention. Such natural abili-
ties may be significantly enhanced with simple techniques
allowing visualising, emphasising or hiding certain arte-
fact attributes as required in a given situation. For in-
stance.

• Programmer’s perception may be improved by assist-
ing him or her in detecting and analysing artefact fea-
tures. This could be achieved in the reuse software by
identifying document structural and surface properties,
highlighting keywords, and distinguishing between
lexically different types of artefacts with the use of font
and colour.

• Automatic detection and the subsequent visualisation
of syntactic and semantic patterns amongst the collec-
tion of observed features, e.g. a simple text parser, may
help programmers to classify different classes of ob-
servable objects, to identify relationships between
them, and to differentiate between the more important
and the less relevant information.

• Syntax-based editors or reverse-engineering tools, may
further help a programmer to synthesise and integrate
collections of observed features into larger and more
meaningful feature chunks forming complete reusable
artefacts. Recognised macro artefacts can then be
automatically indexed and stored for future reference
and possible reuse.

• On occasions, a programmer may directly associate a
complex chunk of observed features with a specific
artefact, via a Gestalt effect. In such a case, the reuse
software may help him or her to decompose a selected
artefact into its parts and their attributes to facilitate a
better understanding of the artefact characteristics, e.g.
by highlighting artefact’s attributes or its sub-elements.

Table 1. Development with reuse vs. cogni-
tive tasks involved

Development for reuse
vs. Memorising

Development by reuse
vs. Remembering

Identification vs.
Perception:
Feature Analysis
Pattern Recognition
Feature Chunking
Gestalt Principle
Focus of Attention

Search vs.
Activation:
Association
Taxonomies
Patterns
Context
Reasoning

Understanding vs.
Conceptualisation:
Propositions
Semantic Networks
Schemata & Frames
Conceptual Graphs
Production Rules
Predicate Rules

Retrieval vs.
Recall:
Recognition
Recollection
Reconstruction
Context & Mood
Metamemory

Generalisation vs.
Generalisation:
Substitution
Deletion
Integration
Abstraction

Selection vs.
Choice:
Economy
Maximising
Satisficing
Elimination
Compatibility

Classification vs.
Categorisation:
Similarity
Typicality
Variability
Reasoning

Adaptation &
Integration vs.

Reasoning:
Deduction
Induction
Abduction

Storage vs.
Memorising:
Retention
Forgetting
Elaboration
Mnemonics
Structuring

Hybrid Approaches

This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 4

• Programmer’s ability to effectively identify software
artefacts and their properties greatly relies on his or her
ability to focus attention on specific areas of analysed
programs or program components and shifting this at-
tention to the dependent or otherwise related program
attributes. Controlling programmer’s attention can be
achieved by controlling the amount of visible details,
by constructing outlines, abstracting certain program
features, or by providing hypertext-like navigation fa-
cilities between related parts of program text.

Understanding. Effective reuse of software artefacts
requires their thorough understanding, which in turn can
only be achieved by the conceptualisation of artefact fea-
tures, structures, function, its possible uses, and relation-
ships between groups of such artefacts.

• Several existing software products, such as reverse
engineering tools, provide programmers with facilities
to detect, construct and visualise the semantics of soft-
ware designs, data and programs using standard dia-
gramming techniques.

• The more sophisticated software artefacts, such as fea-
sibility studies or informal requirements specifications,
may have to be processed with the use of more com-
plex methods, e.g. those based on natural language un-
derstanding, knowledge acquisition and knowledge
representation techniques. Cognitive scientists suggest
several different types of conceptual structures fit to
encode the contents of informal software documents,
e.g. in propositional and semantic networks, schemata,
frames and conceptual graphs, production and predi-
cate rules, etc. Such rich representation can then be
used not only to visualise artefacts in iconic form but
also to reason about their properties and function.

Generalisation. Sometimes an artefact can be too spe-
cific or its representation may contain constraints limiting
some of its future uses. In such cases, a developer may
have to mentally generalise an artefact or its representa-
tion to better reflect its reusable features. Software reuse
tools may provide some limited assistance in the pro-
grammer’s tasks of artefact generalisation.

• Infrequently, software artefacts are produced in
atomic, singular, and indivisible form. More often, they
involve several sub-components, each of which im-
poses certain restrictions on the utilisation of the arte-
fact as a whole. One of the simplest methods of making
an artefact more general is to substitute one of its ele-
ments with a more general component. As commonly
used taxonomies of artefacts already allow program-
mers to determine their generality, active assistance in
determining artefact suitability for substitution could
also enhance the reuse tasks.

• The process of software design frequently generates
numerous constraints aimed at defining the type of data

to be processed, at limiting the use of certain design or
implementation concepts, specifying the user or the
operator of the system, or listing certain efficiency or
flexibility factors, etc. In the effort to make software
more general, some of these constraints sometimes may
have to be deleted or relaxed. This could be achieved
by detailed analysis of artefact structure and its inter-
action with the application domain or by analogy to the
previous attempts at generalisation of artefacts.

• Concepts can be made more general by integrating
them with their subsumption, i.e. ideas which are either
implied or redundant, but which may constraint future
applications. The reuse tool may suggest hiding some
of the artefact details which are not essential or not
used in a given application context.

• Ultimately, concepts can be made general by sur-
rounding them with abstractions representing entire
sets of concepts. A reuse facility could offer hints on
the opportunity of generalising or modularising collec-
tions of independent routines observed to be coupled
via common data, control or sequence.

Classification. In the next step in the process of soft-
ware development for reuse, in his mind, a developer
would categorise, i.e. classify, cluster and index, selected
artefacts to ensure easy recall of their description in the
subsequent reuse. Various information retrieval techniques
can be utilised to assist artefacts classification based on
their similarity, typicality and variability of their features.
Some forms of computer-assisted reasoning may also be
used in this classification process, e.g. by deduction and
induction, by analogy or case-based reasoning, all of the
methods used successfully in learning programs.

Storage. As any other kind of knowledge held by
software developers, information about reusable artefacts
is memorised in the long term memory for future recall,
i.e. references to reusable artefacts, their observed fea-
tures, their structural and functional decomposition, their
propositional, associative and schematic representations,
artefact generalisations as well as their particular in-
stances, various types of indexes and classifications al-
lowing easier access to artefact description, cases and rea-
soning rules about artefacts, etc.

• Memories which are exercised and strengthened have
better retention, memories which are disused or which
interferes with the competing facts slowly deteriorate,
their associations weaken and they are eventually for-
gotten. It should, hence, be the computer tools that
need to maintain all the necessary artefact associations
for programmers to follow during the reuse process.
Such tools may also provide developers with reuse
training facility to refresh and exercise their memories
of stored artefacts.

This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 5

• Human memories of particularly important facts get
continually elaborated with information about their
specific uses, relevance, plausibility and context. Reuse
tools must then offer facilities to continually gather and
enrich the collection of knowledge about reposited ar-
tefacts. They may also provide tools for periodic ac-
quisition of new artefact information about frequently
used or modified software components.

• Experiments show that structured information is
memorised better than that which is unstructured To
improve the chance of correct and effective artefact
retrieval, reuse tools should suggest methods of struc-
turing artefacts into libraries, packages, abstract data
types, modules, database schemata, etc.

• Mnemonic strategies, relying on peg-words, loci,
rhymes, free imagery and associations, can also be
used to provide additional cues for future retrieval.
Annotation and personal notes should be stored with
artefact formal representation and description to im-
prove future recall.

4.2 Development by reuse

Let us in turn focus on the development tasks that take
place in the process of software development-by-reuse.
Here we find that human unparalleled ability of pattern-
matching used in the recognition and recall of memories
allows effective recollection of information about reusable
artefacts. It is also the reasoning skills and the ability to
reconstruct and reorganise human memories that expedite
the adaptation and integration of reusable components.

Search. In developing new systems, expert developers
identify reuse opportunities by relying on their experience
with previously developed programs, their knowledge of
common program components and the way they interact
with each other, and the use of development procedures
which enhance the reuse practices. Novices, however, find
relevant software components by mentally matching their
descriptions with the specification of the new software.
Knowledge of all the matching software artefacts will be-
come activated for the subsequent recall.

• Having the initial problem description, expert reusers
utilise problem-domain concepts and the technical jar-
gon as a guide to associate and subsequently recall in-
formation about the necessary software components.
The strength of association between the concepts de-
pends on contiguity of concepts and the frequency of
their simultaneous use. Keeping track of development
history and context may help developers to recall arte-
fact associations based on the previous simultaneous
uses of related artefacts.

• Novices who lack the knowledge and experience in
both development and reuse, have to laboriously scan
artefact collections, trying to identify software appro-
priate for reuse. Evidently, those of the reusers who
cannot instantly associate appropriate concepts will
greatly benefit from various visual representation of
artefact relationships and dependencies, e.g. through
the use of lists, maps or taxonomies.

• Both types of developers will use their innate ability to
form complex patterns of required software features to
match the artefacts considered for reuse. With experi-
ence, reusers can fall back on context and reasoning to
promote or reject likely reuse candidates. Reuse tools
may apply complex reasoning to assist in searching for
required artefacts.

Retrieval. Once the search of the reuse repository is
completed, e.g. through the use of indices or classes of
artefacts, a developer may then have to fetch or recall the
details of the best candidate artefacts and to make a full
assessment of their suitability for reuse.

• The simplest method of memory recall is by recognis-
ing previously learnt patterns of stimulus-response
pairs, e.g. being able to determine whether a given fact
constitutes previously memorised or new information,
or being able to select the correct/known pattern from a
given list of alternatives. Hence, reuse tools should
provide artefact browsing and previewing capabilities.

• Small amounts of information may be fully recollected
exactly as they were learnt. Such recollections may be
totally free, stimulated only by the problem at hand, or
they can be triggered by additional memory cues, i.e.
information associated with the learnt facts. Query fa-
cilities will assist the developer to retrieve artefact as-
sociated with keyword or conceptual cues.

• Remembering larger units of information usually in-
volves recollecting partial memories, using them to re-
construct the originally learnt facts, and subsequently
recognising re-generated information as valid. Infor-
mation retrieval techniques could be used to map a
partial artefact description into a set of matching arte-
facts.

• Factors frequently quoted as assisting memory retrieval
are those recall cues which go beyond the learnt infor-
mation contents, i.e. context, mood, state of mind, etc.
The benefits of contextual cues can be felt as long as
the retrieval cues are processed in the same way as
during memorising. Personal artefact annotations could
be used in artefact indexing and classification, so that
retrieval queries could be formulated not only in terms
of artefact features but also in terms of contextual cues.

This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 6

• Finally, the knowledge of your own memory mecha-
nisms, known as metamemory, may provide additional
retrieval cues. Reuse tools should be capable of for-
mulating queries against a development history, so that
past retrieval successes and failures could be used to
guide processing of the new artefact searches.

Selection. In the development-for-reuse, artefacts are
memorised in terms of conceptual representations which
are subsequently stored as part of our knowledge of an
artefact, they are used as cues and associations in the pro-
cess of finding and retrieving artefacts, and they can also
be used to understand the similarities and the differences
between retrieved candidates to select the most appropri-
ate artefact. Thus the onus of the understanding process in
the development-by-reuse is on choosing an artefact, and
with it on associated decision making.

• The economic theory of choice relies on decision mak-
ers to construct a formal and ideally universal model of
choice, in which all available options are listed, ranked
in various dimensions and compared. A measure of
semantic closeness between reusable artefacts may be
used to rank their utility in a given situation.

• The theory of risky choice, deals with decision in the
face of uncertainty, it predicts that decision makers will
attempt to maximise the expected utility, i.e. long-run
expected gains, of the selected option. Frequency of
artefact uses could be used to determine the probability
of artefact expected usefulness in a new situation.

• The theory of bounded rationality aims at reaching a
level of satisfaction (satisficing) of decision makers
rather than maximisation of benefits. In this approach
optimal artefact could actually be missed as the first
satisfactory match would be used.

• Elimination by aspects model of choice relies on the
selection of decision dimensions, finding the best op-
tion within each dimension, and elimination of all
choices which are not close to the selected one. Based
on this model, selection of artefacts would trigger arte-
fact pruning until no more candidates are matched
against eliminating constraints.

• Another general mechanism that might support the
response-mode effects is the compatibility principle, in
which, the weight of any input component of a stimulus
is enhanced by its compatibility with the output (re-
sponse). The rationale for this principle is that any in-
compatibility requires additional mental transforma-
tion, which increases the effort and error, thus, reduc-
ing the impact of stimulus. A reuse tool which consid-
ers the imperfect artefacts compatible with the re-
quirements of utmost importance though violating the
less important constraints.

Adaptation and Integration. Integration of the se-
lected software artefacts into the necessary problem solu-
tion may require developers to parametrise, alter, and in
some cases drastically restructure the available artefacts.
In the process developers depend on their reasoning abili-
ties, their knowledge and experience, their intuition and
other subconscious processes. On occasions, they try to
use brute force to experiment with the problem and to test
its boundaries. More often, however, they use sophisti-
cated reasoning methods, such as induction, deduction and
abduction. Expert problems solvers will intertwine several
paradigms to arrive at a hybrid but at the same time very
effective problem solution. Various computer-based rea-
soning techniques, implemented in a form of expert sys-
tems and knowledge based systems, have been suggested
as effective in a limited domain of application.

5. Applications to requirements reuse

A prototype software reuse tool, RARE IDIOM/SoDA
offering many of the above-mentioned cognitive attributes
has been designed and subsequently developed (see the
summary in table 2). RARE IDIOM/SoDA [10, 11] assists
software requirements engineers in the process of analysis,
refinement and reuse of informal software requirements
documents, which are predominantly in natural language
text (e.g. English). The tool automates many of the reuse
tasks (identification, understanding, classification, storage,
searching and retrieval), but it also provides its users with
an opportunity to volunteer their reuse skills in those ac-
tivities regarded as exclusively in the human domain of
expertise (generalisation, selection, adaptation and inte-
gration). Hence, RARE IDIOM/SoDA extends require-
ment engineers natural abilities to analyse and reuse tex-
tual software artefacts and it embeds the human in its
technological cycle.

RARE IDIOM/SoDA analyses the requirements texts,
identifying in them the features of known software arte-
facts described in the ever-expanding domain vocabulary.
Such features are subsequently used as the basis for de-
fining hypertext links between requirements (informal)
and specification (formal) documents stored in the system
repository. The restricted-natural-language parser unravels
natural language phrases into patterns of artefact-related
concepts, their attributes and relationships. This process is
further assisted by the customised text editor used in the
collection of software requirements, which assures the text
entered into a document template to be structured into
topical and cohesive chunks of requirements texts. Hy-
pertext navigation and document outlines are used to di-
rect users attention to specific documents or their compo-
nents.

We have decided to represent individual software re-
quirements in a semantic network. The concepts are pre-
sented to the user as hypertext buttons, their attributes and

This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 7

relationships are recalled with the aid of menus and hy-
pertext links navigable between potentially distant text
fragments. Although RARE IDIOM/SoDA does not at-
tempt to automatically generalise software requirements, it
provides the user with the facility to use hypertext as the
means of inspecting associative and taxonomic relation-
ships between previously analysed artefact abstractions.

Knowledge of accumulated software requirements is
organised into a collection of PROLOG facts and rules,
which are stored into a relational database for efficient
retrieval. Artefact mnemonics, in the form of annotations
that could potentially be used as an additional source of
concept associations, are processed and stored in exactly
the same fashion as the requirements text themselves.

In its processing cycle, IDIOM/SoDA relies on the
human expert to select, integrate and adapt requirements
artefacts. In the process of requirements analysis the sys-
tem follows the economic model of choice, suggesting to
the user a selection of the semantically closest refinements
of analysed requirements. At the same time, RARE
IDIOM/SoDA will alter its artefacts representation to al-
low for the user to volunteer even the most unlikely
though satisfactory choice of requirements interpretation.
Once a partial requirement specification is generated, it
can be further adapted and elaborated by the user with the
built-in text editor, hypertext linker and template editor.
Further work will also include the facility to automatically
alter new requirements documents by replaying previously
observed text transformations.

6. Summary and conclusions

This paper considered various cognitive factors in soft-
ware development for-reuse and by-reuse which are both
thought to be vital for the effective software construction.
We have matched a collection of typical software reuse
activities performed by software developers with a range
of cognitive tasks invoked in the process of their comple-
tion. Several software technologies were then briefly as-
sessed for their suitability to support the identified cogni-
tive tasks. The result of our analysis can subsequently be
used to design a practical software tool capable of inte-
grating both machine and human capabilities to act in-
concert in the reuse process. In general, such a reuse tool
should exhibit the following attributes:

• it should automatically identify and manipulate artefact
features, their patterns and groups;

• it should provide mechanisms for the visualisation and
representation of artefact semantics;

• it should offer assistance in the generalisation of arte-
fact features by component substitution, deletion and
relaxation, integration and abstraction;

• it should assist developers in the process of artefact
classification by similarity, typicality and variability,
possibly with the use of sophisticated reasoning;

• it should deliver effective tools for browsing and
searching artefact lists, maps and taxonomies;

• it should embed programming and training aids for
artefact recollection and their retrieval from software
libraries;

• it should help software reusers to select the best from
amongst of retrieved candidate artefacts;

• it may offer some limited assistance in artefact adapta-
tion and integration.

Right now and in the near future, practical reuse will
only be successful with the human in its cycle.
We should not strive to supplant human natural abilities
with still inferior technology but rather to enhance it for
better performance. Reuse is only in the eye of its be-
holder!

7. References

[1] Agresti, W.W. and F.E. McGarry, "The Minnowbrook
Workshop on Software Reuse: A summary report". In Software
Reuse: Emerging Technology, W. Tracz, Editor. Computer Soci-
ety Press: Washington, D.C. 1988, p. 33-40.

[2] Anderson, J.R., Cognitive Psychology and Its Implications.
Second Edition ed. New York: W.H. Freeman and Co., 1985.

Table 2. Cognitive considerations in the de-
sign of a software-requirements-reuse tool

Reuse Phase Techniques
identification features - domain vocabulary

patterns - natural language parser
chunks - customised text editor
attention - hypertext & outlines

understanding presentation - hypertext buttons
representation - semantic networks

generalisation abstraction - artefact taxonomy
storage &
retrieval

repository - relational database
organisation - facts & rules
mnemonics - annotations

classification &
search

association - facets
taxonomy - concept hierarchy
recollection - menus & dictionary
recognition - hypertext links

selection economic - generated alternatives
satistificing - volunteered selection

integration
adaptation

copying - text replication
referencing - hyper-linking
specialisation - template filling
transformation - history replay

This article will appear in OzCHI’96, The Sixth Australian Conference on Computer-Human Interaction, Hamilton, New
Zealand, 24-27 November 1996.

Page 8

[3] Anderson, J.R., Learning and Memory: An Integrated Ap-
proach. New York: John Wiley & Sons, Inc., 1995.

[4] Arango, G., "Domain analysis methods". In Software Reus-
ability, W. Schafer, R. Prieto-Diaz, and M. Matsumoto, Editors.
Ellis Horwood: London, Great Britain. 1994, p. 17-49.

[5] Bobrow, D.G. and D.A. Norman, "Some principles of mem-
ory schemata". In Representation and Understanding, D.G. Bo-
brow and A. Collins, Editors. Academic Press, Inc.: New York,
NY. 1975, p. 131-149.

[6] Bubenko, J., et al., "Facilitating "Fuzzy to Formal" require-
ments modelling". In The First International Conference on
Requirements Engineering, Colorado Springs, Colorado: IEEE
Computer Society Press. 1994, p. 154-157.

[7] Cheng, J., "Reusability-based software development envi-
ronment", ACM SIGSOFT Software Engineering Notes 19(2),
1994: p. 57-62.

[8] Curtis, B., "Cognitive issues in reusing software artifacts". In
Software Reusability: Concepts and Models, T.J. Biggerstaff and
A.J. Perlis, Editors. ACM Addison Wesley Publishing Com-
pany: New York, New York. 1989, p. 269-287.

[9] Cybulski, J.L., Sharing and reuse in the development of in-
formation systems. Research Report 96/4, The University of
Melbourne, Department of Information Systems: Melbourne.
1996.

[10] Cybulski, J.L. and K. Reed, "A hypertext-based software
engineering environment", IEEE Software 9(2), March 1992: p.
62-68.

[11] Cybulski, J.L. and K. Reed, The Use of Templates and Re-
stricted English in Structuring and Analysis of Informal Re-
quirements Specifications. Research Report TR024, Amdahl
Australian Intelligent Tools Programme, La Trobe University:
Bundoora. 1993.

[12] Eysenck, M.W., Principles of Cognitive Psychology. Hove,
UK: Lawrence Erlbaum Assoc., Pub., 1993.

[13] Goguen, J.A., "Principles of parametrised programming". In
Software Reusability: Concepts and Models, T.J. Biggerstaff and
A.J. Perlis, Editors. ACM Addison Wesley Publishing Com-
pany: New York, New York. 1989, p. 159-225.

[14] Hemmann, T., Reuse in Software and Knowledge Engi-
neering , German National Research Center for Computer Sci-
ence (GDM), Artificial Intelligence Research Division. 1992.

[15] Kant, E. and A. Newell, "Problem solving techniques for
the design of algorithms", Information Processing and Man-
agement 28(1), 1984: p. 97-118.

[16] Katz, S., C.A. Richter, and K.-S. The, "PARIS: A system
for reusing partially interpreted schemas". In Software Reusabil-
ity: Concepts and Models, T.J. Biggerstaff and A.J. Perlis, Edi-
tors. ACM Addison Wesley Publishing Company: New York,
New York. 1989, p. 257-274.

[17] Leahey, T.H. and R.J. Harris, Human Learning. Second ed.
Englewood Cliffs, New Jersey: Prentice Hall, 1989.

[18] Lindsay, P.H. and D.A. Norman, Human Information Proc-
essing: An Introduction to Psychology. Second ed. San Diego:
Harcourt Brace Jovanovich, Pub., 1977.

[19] Maiden, N.A. and A.G. Sutcliffe, "Exploiting reusable
specifications through analogy", Communications of the ACM
35(4), 1992: p. 55-64.

[20] Maiden, N.A.M. and A.G. Sutcliffe, "People-oriented soft-
ware reuse: the very thought". In Advances in Software Reuse:
Selected Papers from the Second International Workshop on
Software Reusability, Lucca, Italy: IEEE Computer Society
Press. 1993, p. 176-185.

[21] Marques, D., et al., "Easy programming: empowering peo-
ple to build their own applications", IEEE Expert 7(3), June
1992: p. 16-29.

[22] Norman, D.A., Memory and Attention: An Introduction to
Human Information Processing. Second ed. New York: John
Wiley & Sons, Inc., 1976.

[23] Shneiderman, B., Software Psychology: Human Factors in
Computer and Information Systems. Cambridge, MA: Winthrop
Publishers, 1980.

[24] Soloway, E. and K. Ehrich, "Empirical studies of program-
ming knowledge". In Software Reusability: Applications and
Experience, T.J. Biggerstaff and A.J. Perlis, Editors. Addison-
Wesley Pub. Co.: Readings, Massachusetts. 1989, p. 235-267.

[25] Sommerville, I., Software Engineering. 4 ed. Wokingham,
England: Addison-Wesley Pub. Co., 1992.

[26] Sutcliffe, A. and N. Maiden, "Specification reusability: why
tutorial support is necessary". In Software Engineering 90,
Brighton, U.K.: Cambridge University Press. 1990, p. 489-509.

[27] Tracz, W., "Software reuse: motivators and inhibitors". In
Software Reuse: Emerging Technology, W. Tracz, Editor. Com-
puter Society Press: Washington, D.C. 1988, p. 62-67.

[28] Vitalari, N.P. and G.W. Dickson, "Problem solving for
effective systems analysis: an experimental exploration", Com-
munications of ACM 26(11), 1983: p. 948-956.

[29] Volpano, D.M. and R.B. Kieburtz, "The template approach
to software reuse". In Software Reusability: Concepts and Mod-
els, T.J. Biggerstaff and A.J. Perlis, Editors. ACM Addison
Wesley Publishing Company: New York. 1989, p. 247-256.

[30] Waters, R.C. and Y.M. Tan, "Toward a design apprentice:
Supporting reuse and evolution in software design", ACM Soft-
ware Engineering Notes 16(2), 1991: p. 33-44.

