Reuse Libraries Cybulski

Management of Reuse Libraries
Jacob L. Cybulski
Department of Information Systems
University of Melbourne
Jj.cybulski@dis.unimelb.edu.au

Abstract

We believe that any reuse-based software development process will utilise a large collection of
reusable software work-products and components. Such a collection must be supported with a
library system that could effectively and efficiently facilitate storage, classification, search and
retrieval of reusable artefacts. The paper briefly reviews techniques that are and can be used in
the organisation and management of a library of reusable software artefacts, preparation of these
artefacts, their storage and retrieval. The section emphasises the need for artefact classification in
support of effective library organisation. It compares and contrasts three main approaches to
software classification, i.e. those based on keywords, facets and object-oriented techniques. It
then discusses technologies that can support any of these three approaches.

Introduction

Management of reuse libraries, including artefact classification, storage, search and retrieval, is
one of the most fundamental services expected of any reuse environment [2]. However, as there
is a plethora of different artefact types of varying form and contents (Cf. Table 1) [99, p 752],
the task of designing and the subsequent managing of even the simplest of the reuse libraries is
non-trivial. The use of standard database or dictionary technologies can be applied with great
success to the representation and holding of highly regular and structured artefacts, e.g. diagrams,
tables or screen designs. Database and dictionary technologies, however, are not entirely suitable
to handling ill structured and informal artefacts, in particular those based on plain English text
(e.g. requirements, reports, schedules). Artefacts that lack structure and formality are hard to
represent in an efficient form, hence, they require special-purpose processing and custom storage
facilities.

According to a DoD / SRI report on Software Reuse [42], the most important functions and
attributes of a reuse library are almost entirely determined by few carefully selected repository
options, such as:

1. Representation platform that may include paper based systems, database management
systems, information storage and retrieval systems, knowledge-based systems and hypertext.

2. Indexing and classification methods of which the most commonly used in practice are those
borrowed from library science, i.e.

e Free text keyword classification in which software artefacts are indexed by keywords
extracted automatically from the text of the artefacts themselves;

e Faceted classification where artefacts are categorised by synthesising vectors of facet
values; and,

e Enumerated or object-oriented classification in which reusable artefacts are assigned to
mutually exclusive, hierarchical classes.

Reuse Libraries

Cybulski

Enterprise: Application design: Validations and verification:
o Organisational structure o Methodology rules o Testplan
o Business area analyses o Graphical representations o Test data cases
o Business functions o System diagrams o Regression test scripts
o Business rules o Naming standards o Testresults
o Process models (scenarios) o Referential integrity rules o Statistical analyses
o Information architecture o Data structures o Software quality metrics
o Process definition
Project management: o Class definition System documentation:
o Project plans o Menu trees o Requirements documents
o Work breakdown structure o Performance criteria o External/internal designs
o Estimates o Timing constraints o User manuals
o Schedules o Screen definitions
o Resource loading o Report definitions Construction:
o Problem reports o Logic definitions o Source code
o Change requests o Behavioural logic o Object code
o Status reports o Algorithms o System build instructions
0 Audit information o Transformation rules o Binary images
o Configuration
dependencies

o Change information

Table 1: Types of repository information'

Recently conducted experiments [50] showed no clear advantage of one method over
another in terms of their recall effectiveness and precision of artefact search. The
experiments, however, found that enumerated classification outperformed the other two
methods in terms of speed of search. It was also determined that free text keyword
classification is the least expensive as it does not require human intervention in the process
of document indexing.

Other important methods of indexing reusable components are those drawn from:

o Artificial Intelligence, in particular computational linguistics, knowledge-based systems
and expert systems;

e Hypertext; and,
e Formal specification methods.

3. Repository scalability across platforms of different size and complexity, which is of the
highest importance to corporate reuse policies of the majority of large developer companies,
such as Department of Defence or NASA. The issues considered as part of reuse scalability
are library interoperability, library interface design, distributed heterogeneous databases,
database security, quality assurance, change management, automated support for controlled
vocabulary indexing; and better representation of library collections to help users find and
understand the parts they need.

The following sections review examples of systems, methods and techniques that in recent times
were adopted by research and development groups to support the construction and management

" Adopted from [99, p 752].

Reuse Libraries Cybulski

Function "Max" takes an Synonyms (significant words):

array of integers and returns access read write append open close
their maximum value calculate add subtract multiply divide
collection array list file set

c g s |8 5 memory disk ram floppy drum storage
a o c 3 @
2 < 5 Q error bug fault
o g
5 execute perform apply
folder directory
| collection | | input | function procedure subroutine routine operation
input take get receive
| function | | output | | number | number integer real value complex figure
E . output put produce result return print
i _Ch_eclfmg program code command
! similarity of
: text units using
: word stemming, Thesaurus (broadening):
! keywords,
a E stop lists, % calculate number
gi = synonyms & =3 function execute program debug test
Q' o thesaurus o
M memory access collection

List "DBG" contains a

number of tools useful in Stop list (noise words):
software debuggin a an and are do have in is it of the their...

Figure 1: Example of keyword-based classification

of reuse libraries, and emphasise the approaches taken to the indexing and classification of
reusable artefacts. Other factors, such as the repository platform and the scalability of the
methods are also taken into consideration.

Keywords-Based Methods

Early software libraries provided very little automation to access and retrieve their functions,
modules and data structures. Typically, e.g. in mathematical software libraries like IMSL [69],
library providers delivered massive documentation with detailed description of each reusable
component, a table of contents and index of names. In later years, e.g. UNIX or Microsoft
Foundation Classes, the documentation was accessible in a form of searchable on-line manuals. It
is only in the recent years, that libraries incorporated sophisticated classification methods based
on the process of identifying and clustering keyword strings found in the text of the software
artefact itself (Cf. Figure 1). Salton provides a thorough survey of keyword-based techniques as
applied to text retrieval [111]. In his review he suggests the use of:

e inverted indexes for better access to text records;

o distance constraints to more accurately assess the nearness of two records;
o weights and frequencies to distinguish the importance of keywords;

e stop lists to eliminate commonly used and unimportant or noise words;

o synonym lists and thesauri to broaden the text retrieval queries;

o word stemming and term truncation to standardise word usage;

o quorum-level searches to control the size of retrieval output;

o partial list searching techniques to consider subsets of query terms;

e phrase-formation techniques to control keywords co-occurrence context;

2.1

Reuse Libraries Cybulski

Y& C:\PROGRA~1\CATALDGA\CATALOG EXE

0 3 e le One i kR A Scroll by line
e 0 e le One Hext Page

0 A) : Previous Page
: it B i e Firzst Page

: 0 z D S Last Page

Heturn to
Previous Screen

=
=

Enter — Select Item

DD gD D

Figure 2: CATALOG system

o statistical text indexing to automate document classification;
o document clustering to improve retrieval of related documents;

e in Salton's later work [112], he also investigates various linguistic approaches to document
indexing, e.g. generation of complex content identifiers, use of semantic terms obtained from
machine-readable dictionaries, and the utilisation of specially constructed knowledge bases.
He eventually highlights the unacceptable imprecision of the syntactic methods used in his
experiments and points out the power of simpler statistical methods.

Nearly all of the techniques applicable to text retrieval have been tried and used with varying
success in the classification and retrieval of textual software artefacts. Many of the identified
methods have also been extended or combined with other types of software classification
methods, i.e. faceted or enumerative (see the following sections).

Reuse with General-Purpose Document Libraries

As the majority of software artefacts are plain text, the most obvious approach to the
classification and retrieval of software is to adopt an existing text processing system. Frakes and
Nejmeh employed AT&T's CATALOG keyword-based information retrieval (IR) system to
create a small library of software modules [49].

The CATALOG system (Cf. Figure 2) features a database generator, an interactive tool for
creating, modifying, adding, and deleting records, and a search interface with menu and
command modes. The search interface allows boolean combinations of terms and sets of retrieved
records, and the queries are resolved with partial term-matching techniques, such as term
stemming and phonetic variants. Searching is carried out using an inverted index of significant
terms and a stop list is used to strip numerous noise words.

To further promote the clarity and accuracy of reusable information, Frakes and Nejmeh
structured all of the reuse information using predefined templates to handle different types of
software artefacts, e.g. modules and functions. The approach taken in this experimental system
showed that standard information retrieval (IR) technology could be used effectively to organise
simple reuse libraries. It also showed that organisation of large-scale repositories of software

2.2

23

Reuse Libraries Cybulski

documents needs specialised technology going far beyond simple IR. Such technology could
assist in the interpretation, indexing and structuring of software artefacts across the entire
software life cycle and it may call upon sophisticated information processing techniques, such as
natural language processing, knowledge representation, production rules or the use of intelligent
thesauri.

Reuse with Custom-Made Software Libraries

A specialised software reuse system best known for its keyword-based retrieval is DoD's SRL -
STARS (Software Technology for Adaptable, Reliable Systems) Reuse Library. Experience with
the construction and the subsequent use of SRL lead its developers to address many problems that
in the past hampered efforts to effectively adopt standard text-retrieval techniques to software-
reuse [9], e.g.

e stemming sometimes reduces unrelated words to the same stem;

e some apparent noise words are in fact contents words in some contexts;

e automatic use of synonyms, sometimes broadens the query in inappropriate way;

e certain combinations of words should be treated as phrases rather than search words;

e broadening of the queries with no hits is not always useful.

In view of these problems, SRL provided the following facilities:
e more accurate stemming based on the intended use of words;
e more control over the use of noise words, synonyms, and query broadening;

e phrase matching used in query refinement;

help offered in the process of query reformulation;

e provisions in handling technical expressions.

These facilities lead to the following features incorporated in SRL:
e 15,000 word dynamic lexicon of citation word forms;

e chart parser built on top of repository services;

e graphical user-interface for reformulating queries; and finally,

e morphological analyser for handling technical terms.

Menu-Driven Library Access

The REUSE (REUsing Software Efficiently) system was built to effectively classify and retrieve
existing software information [10], i.e. templates, modules, packages and executable programs.
Similarly to SRL, the REUSE system uses keywords to classify its library components. At the
same time, however, user access to the REUSE information retrieval system is organised not by
means of queries, but instead, via a customisable, menu-driven front-end. The software uses
keywords, which reflect the needs of an organisation, to build a hierarchical system of menus that
reflect the organisational standards and methodologies. Such menus and keywords provide tools
for classifying and retrieval of reusable software components. The REUSE system also maintains
a thesaurus to reduce terminology differences within the user community.

24

Reuse Libraries Cybulski

Other Features

More recent, albeit less known, systems extend the fundamental keywords retrieval by including
facilities that enhance the access and maintenance of reuse repositories.

In Ithaca's SIB (Software Information Base) library system, keywords characterising reusable
artefacts are organised into keyword descriptors. These are subsequently weighted to determine
their relative importance and then related by their semantic similarity. Both descriptors and their
relationships form an elaborate network of nodes and links that could be later queried by the
system search facility [52].

In the CART system (Computer-Aided Reuse Tool) classification is performed using
keywords generated automatically from the specification models. Users can subsequently query
the system using a much richer language than that used in the model. This is achieved with the
assistance of a thesaurus, normalising the terminology, and some help from the user whenever the
query resolution is too complicated for the system to undertake the correct decision [80].

In CodeFinder, the keyword-based retrieval system is further supported by iterative query
reformulation and a novel retrieval approach using a neural-network like spreading activation and
relaxation algorithm capable of effective retrieval of software components related to the query by
keywords, phrases and lexical affinities [67].

Faceted Classification Methods

Colon classification and chain indexing, later known as the faceted classification scheme, was
first proposed by an Indian scholar and a librarian, Shiyali Ramamrita Ranghanathan, as an
effective technique for the management of library information [105]. Faceted classification is the
main competitor to the popular Dewey decimal system of classifying library collections. Prieto-
Diaz and Freeman were first to suggest the possibility of adopting faceted classification for the
classification and retrieval of reusable software artefacts [100, 102]. Traditionally, the faceted
classification technique relies on the existence of a large number of domain terms organised into
several distinct and orthogonal sets referred to as facets (Cf. Figure 1). Each newly acquired
artefact is subsequently described in terms of a descriptor vector where each vector value is
picked from one of these pre-defined facets. Such classification vectors are then stored in a
relational table in which columns represent facets and rows denote artefact descriptors. The
classification table can later be searched to find and retrieve the necessary artefact descriptors.
Searching for matching artefacts could be simple and effective with the use of a relational query
language, such as SQL. An alternative (and preferred) method of artefact retrieval is based on a
metric assessing the conceptual closeness of a query, artefacts and their attributes in each of the
facets. Other search and matching mechanisms may utilise more sophisticated methods based on
the statistical profiles of artefact descriptors, affinity and similarity metrics, vector spaces or
fuzzy logic [102, 111].

When it comes to the speed of retrieval and the cognitive complexity associated with the use
of the artefact indexing and retrieval mechanisms, faceted classification compares well with other
classification schemes, e.g. keyword-based, attribute-value and enumerative [50]. Its main
strength is ease of artefact classification, simplicity of representation and storage of artefact
descriptors, uniformity of classification attributes, and ease of automation [101]. The main
deficiency of faceted classification, as adopted in many existing systems, is the high cost of
repository maintenance, which is due to the predominantly manual classification of artefacts [89,
118].

The following aspects are characteristic for many faceted classification systems:

Reuse Libraries Cybulski

\\7
i\

(U
|

abew \

ainjoajiyaie
Buunjonsys

J09)YyoIe
Jaubisap

Bujuyep
uopnjos

sisAjeue
ubisep
ssaooud

To further

Artefacts refine artefact

are classified matching,

in terms of a fixed number apart from the
of facets. Each facet defines classification

terms, each facet also
specifies a metric used
to determine closeness
of these terms.

a number of predefined
classification terms. Similarity
of artefacts is determined by the
number of common facet terms.

Figure 1: Example of faceted classification

o facets specify a controlled vocabulary used in the artefact classification;

o facets are usually tailored to make the classification subject-specific;

e classification terms are commonly broadenedwith the use of synonym lists and a thesaurus;
o facets are ordered by their relevance to the users of the collection;

e similarity of facet terms is assessed by arranging them into a conceptual distance graph;

e retrieved items are ranked on their semantic closeness to the query;’

e faceted classification is extendible as new classification terms and new facets can be added at
any time;

Artefact Management with Facets

In the scheme proposed by Prieto-Diaz and Freeman and adopted by GTE Data Services in their
Asset Management Program [103], software components are described in terms of the following
facets :-

e function,

> Which is an artithmatic combination of semantic distances between the facet terms

characteristic of the query and the retrieved artefact.

3.2

Reuse Libraries Cybulski

e objects the function manipulates,

e medium supporting the object structures,
e the system type,

e functional area, and

e application settings.

Classifying the component, hence, consists of selecting a tuple that best describes the
component. To avoid multiple classifications due to word synonyms, a controlled vocabulary is
provided via a thesaurus. In addition to the list of characterising term, each facet also defines a
weighted conceptual graph of its classification terms. The graph is then used to calculate the
conceptual closeness between terms and the similarity of classified artefacts and the query used to

retrieve them. Retrieved programs are then ranked, using fuzzy set theory, according to the
estimated reusability effort based on:

e program size in lines of code,

e program complexity in terms of the number of modules, linkages and cyclomatic complexity,
e program documentation quality,

e subjective ranking,

e programming language in relative language closeness, and finally

e the reuser's experience.

Combining Search Techniques

Sorumgard, Sindre and Stokke [118] also apply faceted classification as the main information
retrieval mechanism in their ESPRIT project REBOOT. They observe that in faceted
classification reuse decisions are based on information coming from several different categories
as opposed to a single source of reuse decisions coming from a single classification hierarchy in
enumerative methods. From this viewpoint, faceted classification is superior to commonly used
enumerative or taxonomic schemes.

The REBOOT search for reusable components invokes either an associative search (on
attribute value, e.g. DBMS) or textual search (pattern matching or linguistic attributes), both
types based on the limited dictionary of classification terms. Initially REBOOT used four facets:

e abstraction (e.g. stack, resource manager),

e operations (e.g. push, pop),

e operates on (e.g. integer, set, list, resource), and
e dependencies (e.g. compilers, operating systems)

Through the application of their scheme, the authors found a number of problems in
maintaining the term-space to keep the classification and the term-space consistent. They also
found some problems with the granularity of the term-space. After a thorough evaluation of their
experiments they proposed to alter their classification scheme to include the abstraction,

operations, parts, collaborators, and dependencies facets. For each facet they identify its main
classification terms and the additional qualifying classification terms.

3.3

3.4

Reuse Libraries Cybulski

Document Clustering and Concept Affinity

Although, the F3 (From Fuzzy to Formal) project does not explicitly list faceted classification at
the center of its retrieval methods, Castano and DeAntonellis use a hybrid approach using the
techniques of faceted classification, document clustering, and semantic affinities [26]. In the F3
reuse system, components are extracted from previously constructed applications and then they
are grouped on the basis of affinity coefficients. This group of similar application components, or
schema, defines a single reusable component abstracting structural and behavioural features
common to all of the components belonging to that group. The system assumes a specific domain
of application for which it provides a thesaurus of synonyms and homonyms for the frequently
used terms (to be used later by the reuse similarity mechanism). As F3 addresses the entire reuse
cycle, Castano and De Antonelli specify the details of reuse techniques to be used in the design-
for-reuse and design-by-reuse. Design-for-reuse involves:

o selection of schemas based on the schema descriptors;

o classification of candidate schemas by grouping them into similarity clusters based on a single
link clustering method [111, pp 329-333];

e semantic affinity levels based on a complete-link clustering method [111, pp 334-336] are
used in the selection and classification of candidate components;

e design of reusable components;

e assimilation of reusable components into a library.
Design-by-reuse consists of the following phases:

e retrieval of reusable components by formulating a suitable query involving component
descriptors;

e schema design; and its

¢ transformation by refinement and abstraction.

Other Features

Embley and Woodfield combine faceted indexing and keyword techniques to classify a collection
of abstract data types [44]. Each abstract data type had associated descriptors that classify it into
a number of facets consisting of descriptive keywords and their aliases. Descriptors can also
specify relationships between pairs of abstract data types, some of which can be generated
automatically from the keyword values used in the descriptors. In ESF ROSE [93] faceted
classification is also used to classify software components. Apart of the standard features of
limited vocabulary, use of synonyms and thesauri, the system also has a unique ability to use
facets structured into several different levels of abstractions. This levelling of facet information
enhances the effectiveness of artefact classification but also aids the retrieval processes and
clustering of artefacts into similarity groups.

It should be noted that faceted classification finds its way into many other computer-based
applications, starting with the original library applications [98] and ending with organising
database access [43].

Reuse Libraries

Object-Oriented Classification
Methods

A drastically different way of organising software artefacts
can be achieved with the use of enumerative classification
[100], which relies on entering artefacts into a predefined
hierarchy of categories. One of the most successful
application of this method is Dewey decimal method of
classifying book titles by their subject [e.g. see 37] (cf.
Figure 1). Another form of such hierarchical classification is
represented by object-oriented systems of concepts [41, 58,
61].

Object-oriented systems typically consist of many inter-
related concepts, commonly referred to as objects (also
known as nodes, concepts or instances). Objects are
described in terms of their property values that may include
references to other objects. Objects can also define methods
(also known as member functions) producing useful
computations in response to requests received from other
objects in the system or from the system interfaces. New
objects with all their properties and methods are created
(instantiated) according to abstract descriptions provided by
classes (frames, schemata or units). Classes are organised
into inheritance (subsumption) hierarchies (taxonomies).
The more general classes are said to subsume the more
specific ones. As a result, the more specific classes inherit
the properties and behaviour of their superclasses.
Subsumption also implies set-superset relation of the
associated class instances.

Different classification approaches may have to be
taken in relationship to different types of objects in the
software system. We may wish to build a separate taxonomy
for class specifications and designs, design alternatives,
architectural peculiarities or the details of class
implementation [35].

Advocates of object-oriented methods [87] claim that

Cybulski

Dewey Decimal System Hierarchy

UNIVERSE

Generalities
(000)

Knowledge
(001)

\\ Data Processing
(001.6)

Systems Analysis
(001.61)

Electronics
(001.64)

\\ Programming
(001.642)

Software
(001.642 5)

Systems
(003)

Technology
(600)

L Systems Engineering
(620.7)

Systems Analysis
(620.72)

Systems Construction
(620.73)

Figure 1: Example of enumerative
classification

the structures and mechanisms employed in object-oriented software systems greatly facilitate

reuse of software components:

¢ Object-oriented programming promotes bottom-up development using existing classes;

¢ An object-oriented system can be viewed as a collection of related and communicating classes

rather than a monolithic block of program statements;

e (lasses combine data and procedures, they are modular and general, their interfaces are

clearly specified and abstract;

e New classes can be derived from the exiting classes by specialisation and instantiation;

10

4.1

Reuse Libraries Cybulski

o Features and behaviour of existing classes are readily available in the newly derived classes
via inheritance and multi-inheritance;

e It is possible to develop classes specifically for reuse, i.e. they may include a number of
deferred features (e.g. virtual methods), which are then implemented at the class
specialisation;

¢ C(lasses combine elements of design and implementation into a single reusable unit.

In the past, there has been a tendency to equate reuse with object technology or to assume
that reuse cannot occur without it. Field studies show, however, that highly acclaimed object-
oriented programming languages, such as Eiffel, Smalltalk, C++ and Java, Ada 95, Object Cobol
and Object Pascal, do not provide any significant reuse benefit on their own [63].% In fact to date,
the most successful large-scale reuse has been achieved with Cobol, Fortran, C and Ada [106].4
Object-oriented tools support artefact abstraction and classification, encapsulation and
modularity, inheritance and polymorphism, aggregation and composition, concurrency and
persistence. Still, the spectrum of reuse tasks supported by such tools is usually limited only to
the creation and composition of reusable artefacts - hence it is very narrow. Object-oriented
methodologies and tools supporting them must still be created to take advantage of the potential
reuse features provided by these languages.

It seems that objects are neither necessary nor sufficient for effective reuse. They could,
however, prove extremely important if the right approach to their life-cycle utilisation is
employed [62].

Artefact Relationships in Semantic Networks

The earliest systems of structured object descriptions were semantic networks [104] - a collection
of concepts and their property-values, all forming a network of nodes inter-related by their
properties. Although such systems were not designed to be repositories of software components,
many techniques developed primarily for the manipulation of knowledge in semantic networks
are still applicable to the processing of software artefacts and their descriptions.

Semantic networks are structured into planes of nodes related to a single concept. Individual
planes, however, have no internal structure, hence, a single semantic concept is represented as a
web of connections to all possible reachable nodes in that plane. A concept may also associate
with concepts from other planes; such links represent inferences and shifts of attention. In the
semantic network there is no predetermined hierarchy of classes and superclasses; every node
defines its own hierarchy of concepts reachable from its point in the network.

Search and matching of the semantic network concepts may rely on the idea of activation
spreading with decay. In this method, a number of nodes representing the query are marked as
active. This activity will then spread to other areas of the network. The activation will decay with
distance from the starting points, the closer the higher activation, the further the weake.
Activation of nodes is additive, hence, the concepts receiving activation from many sources will

Programming languages provide only a method of defining structured objects, they do not
supply any methods of organising, searching and managing repositories of such objects.

Such successes are mainly due to the highly regulated industries using these languages and
the nature of projects undertaken in these languages, i.e. military, engineering and space-
program applications.

11

4.2

Reuse Libraries Cybulski

be highly active, these concepts are considered to represent the answer to the query. While the
activation spreading within a single plane represents a mere recall of associated information,
plane "hopping" is regarded as inferring ideas not directly represented in the data given in the
concepts being matched. To enhance processing of information in semantic networks, some
systems allow linking of actions and inferences to the nodes or associations between such nodes.
Such actions and inferences are triggered during various operations on the knowledge encoded in
the network, e.g. search, matching, addition of new knowledge, detection of redundancies,
conflicts, etc.

Semantic network models of human memory include HAM [7] and ACT [6]. The best
known examples of useful applications of knowledge representation schemes derived from
semantic networks include vision and scene recognition systems [123], natural language
processing [85, 113, 122] or databases and expert systems [119].

Component Taxonomy with Subsumption

Frame systems extended the notion of semantic networks, thus allowing knowledge to be
structured into a collection of frames (or classes) - reusable abstract knowledge units [91]. Frame
properties are called slots (properties or variables) and they may store both declarative (values)
and procedural (methods or demons) knowledge. Frame systems are usually organised into
PART-OF and IS-A hierarchies to allow composition and inheritance of properties shared
between general and specialised frames. Frame systems are a direct precursor, and are
isomorphic, to object-oriented systems. Hence any technique developed for frame based systems
will also be applicable to object-oriented systems.

Classification in frame or object-oriented systems is the operation of assimilating a new
description into a taxonomy of existing concepts by linking it to its most specific subsumers and
the most general concepts that the description subsumes [126]. Woods lists five types of
subsumption relations:

1) Extensional subsumption where the model-theoretic extension of a concept contains the
extension of another concept;

2) Structural subsumption where the concept subsumption is determined by virtue of formally
specified criteria applied to the structure of the concepts;

3) Recorded subsumption where general concepts are explicitly recorded as subsuming the more
specific concepts in a stored taxonomic structure;

4) Axiomatic subsumption where the more general concept is asserted to subsume the more
specific concept as an axiom of the knowledge base; and

5) Deduced subsumption where the more general concept is deduced to subsume the more
specific concept by deductive inference applied to knowledge of the domain.

The majority of existing object-oriented systems employ extensional or recorded subsumption
leading to a manual process of classification and retrieval of objects by the designers of object
systems. Classification tasks, however, can easily be automated when the system relies on
structural, axiomatic or deduced subsumption.

In general, the process of classification of information and its subsequent search in the class
taxonomy relies on the traversal of the subsumption hierarchy from the most general to the most
specific classes, looking for successful matches against the query [75]. The query is usually
defined as an object partially filled with desired property values or constraints imposed on these
properties. The non-matching classes and all of their subclasses are cut from the search-tree.

12

Reuse Libraries Cybulski

Searching the subsumption sub-trees for the more specific candidates further refines the list of
matches. In the simplest case the search can be breadth-first or depth-first. Other search heuristics
may also be used to improve the chance of a successful match [116, cf. Search]. Classification
of new objects and their instantiation into a subsumption taxonomy of existing classes uses a very
similar process. A query object is constructed from the observed feature values and a standard
search algorithm is used to determine a set of matching candidate superclasses and subclasses.
Depending on the quality and the number of matches, the instantiation heuristics may determine
to instantiate the new object into one of the found candidates, or a new sub- or super-class may
need to be defined, or existing classes may be split or joined. Early frame representation
languages and systems include FRL [107], KRL [17], NUDGE [60], PERL [38] or KEE [46].

A typical frame or object-oriented system derives its power and efficiency from its highly
modular representation, inter-linked class hierarchy and the subsumption-based inheritance
mechanism. KL-ONE [19] and its descendants, such as LOOM, KRYPTON, KANDOR, BACK
and CLASSIC, however, have been characterised as "frame systems implemented in logic".
Therefore, KL-ONE languages have a number of architectural features that make them unique
amongst other subsumption-based systems [83]:

e They are logic-based (first-order logic);

e They draw the distinction between a terminological and assertional knowledge to express
concept descriptions and to state facts about knowledge domains respectively;

e They include a classifier that organises concepts into subsumption taxonomy.

Using logic as the mechanism behind KL-ONE inheritance offers the system users a number of
benefits:

e users can inspect individual concepts to see if the constraints that logically apply match the
user's own expectations;

¢ the system automatically detects concepts that inherit conflicting constraints;

e inherited constraints and class-superclass and instance-class subsumption links are cached to
further improve the retrieval performance.

Computation of subsumption relationships is usually quite inefficient, and in general, even
untractable. KL-ONE languages, however, choose only a subset of inferences useful in
determining instance-class and class-class relationships. The selected subsumption inferences
eventually lead to good performance indicators in CLASSIC, the final attempt at automating
classification of logic descriptions. The main deductive and classification power of CLASSIC
[18] comes from its rich collection of inference rules, which govern the completion of logical
consequences and assertions, classification and subsumption of individuals and classes, and
application of forward-chaining rules. CLASSIC also specifies a series of methodological steps
(some are machine-assisted) that enhance the system's knowledge-engineering tasks, i.e.

e enumerating object types,

o distinguishing concepts from roles,

e developing concept taxonomy,

e determining value restrictions,

e detailing unprecedented value restrictions,

e determining inter-role relationships,

13

Reuse Libraries Cybulski

o distinguishing essential and incidental properties,
o distinguishing between primitive and defined concepts, and finally
e determining clusters of concepts.

Taxonomical organisation of software artefacts is very popular in those systems that store and
reuse object-oriented software components, many of which have already been partially classified
in the process of their design and implementation. Devanbu, Brachman, Selfridge and Ballard
[40] describe LaSSIE software information system that integrates architectural, conceptual and
code views of a large software system. The system query and browsing facilities allow
programmers to search a large software system in an attempt to identify reusable software
components suitable to the task at hand, hence, overcoming what the authors term the discovery
problem. LaSSIE's knowledge base stores the software components in a taxonomy of frames that
represent actions (e.g. external and internal actions, and stimuli), objects (e.g. communication
device, resource, hardware and software), doers (e.g. users, processes, groups and processors),
and states (e.g. line, resource, data and network states). LaSSIE's knowledge-based system,
KANDOR derived from KL-ONE, represents and classifies software components in frames with
logic. It allows:

e aggregation of information about programs and their components;

e semantic retrieval of software components;

¢ use of classification and inheritance to suport software updates; and
¢ use of a knowledge base as an intelligent index of software artefacts.

The retrieval algorithm used in LaSSIE takes a query frame, places it in the frame hierarchy and
then matches all of the instances that a query frame subsumes. LaSSIE also allows the use of
natural language queries that can be converted into query frames. In later years, LaSSIE's original
representation language KANDOR was replaced with a newer knowledge-based system
CLASSIC [18]. The system significantly extended the original functionality built into LaSSIE. It
offered a very extensive set of tools to classify abstractions and their instances, to search for class
and object descriptions, to check system integrity, and a great many facilities that were used to
support many other knowledge engineering tasks - all being at the crux of LaSSIE's software
reuse operation. While LaSSIE proved to be a very useful software retrieval tool, building its vast
knowledge base is still a manual, hence slow and expensive, process.

The amount of manual effort expended in the description and classification of reusable
artefacts can be reduced through the use of a knowledge acquisition environment tailored for a
reuse-oriented model of the software development process. BAUHAUS [5], developed in the
ART language, provides such an intelligent environment to Ada software libraries. The system
automates several programming tasks found in a typical software development life cycle, i.e.:

e storing and maintaining information about program parts and their interconnection;
e composing specification of new applications from reusable parts; and to

e generating code from specifications into a given target language.

BAUHAUS assists programmers in all these activities by:

¢ initialising its knowledge base by parsing text specifications and source libraries into a frame-
based description language;

e providing facilities to manually annotate acquired objects with requirements information;

14

4.3

4.4

Reuse Libraries Cybulski

e classifying the resulting component descriptions into a subsumption network - thus giving
requirements, specification and implementation views of the reuse system.

Once Ada components have been classified into a subsumption structure, BAUHAUS provides
component browsing and retrieval facilities based on the retrieval-by-reformulation approaches
also used in knowledge-based systems.

The AIRS system is another example of a frame-based system to facilitate reuse of software
components [97]. The system uses frames to represent the features and composition of program
functions, as well as software components "subsumption" and "closeness" relationships, to
facilitate searching for reusable operations and packages, and to provide capabilities for helping
programmers to assess the worth of reusing particular packages.

Hybrid Systems

In some applications, the class hierarchy may be very large or it may include multi-inheritance
relationships between classes, hence, leading to lattices of classes. In such cases, other forms of
class indexing and classification have been suggested to assist the search for matching classes. In
the ITHACA project and more specifically in its RECAST specification reuse subsystem, the
taxonomy of artefact descriptions can either be browsed along the structural and methodological
links, or it can be queried using a combination of class static and dynamic attributes, keywords
with thesaurus, and weights [13, 52]. DEROS system of object-oriented components is built
upon a hypertext system and faceted classification of domain knowledge and reusable
components' information to improve access to individual artefacts [27]. In WharfRat [84], a
semantic network of data types is used together with fuzzy logic as its primary artefact retrieval
mechanism.

Large Components

In the majority of circumstances individual classes cannot be considered useful reusable units -
they are too small and their interfaces are too specific. Some authors propose the reuse of larger
and more abstract groups of objects, such as object architectures, design and analysis patterns,
abstract subsystems and frameworks [22, 48, 53, 71, 125]. Some software engineering
researchers report having demonstrations of such object abstractions and macro-structures to have
a very significant impact on software reusability, e.g. see use of:

o view-controller-model framework in Smalltalk-80 [39];
e frameworks in event-based simulation [90];

e domains and themes in CASE reuse [64];

e use-cases and architectures in domain analysis [28].

Others contest this claim [21], claiming that even such large-grain software components do not
directly contribute to improved reusability due to the lack of relevant methods and techniques that
could assist software engineers in their classification and storage in the reuse repository and the
subsequent retrieval and adaptation.

Technologies Assisting Artefact Reusability

There exist techniques and methods drawn from many areas of computer science, that do not
provide a direct functionality to reuse libraries but which are commonly used to enhance some of

15

5.1

5.2

Reuse Libraries Cybulski

their aspects, e.g. usability of a query language, effectiveness of artefact access or representation
of artefact description. Technologies most useful in information retrieval are those provided by
work in text and knowledge processing, e.g. techniques to assist in text scanning and
classification, routing, reformatting, data extraction, selective retrieval, text parsing and
representation, linking and referencing, query answering, etc. Engelien and Ronnie [45]
demonstrate the feasibility of natural language and knowledge representation techniques in many
commercial applications (though not related to software engineering), e.g.

o financial telex scanners - ATRANS and CBR/Text (Cognitive Systems Inc, pp 183-186), IBS
(Citibank, pp 107),

¢ understanding sketchy messages - Nomad later called Vox (U.S. Navy, pp 109-110),
¢ recording ship movement (Cognitive Systems for U.S. Cost Guard, p 109),

¢ information retrieval for Yellow Pages (GSI-Earli, pp 190-194),

e financial news service - SCISOR (General Electric, p 113);

e news classification and retrieval - TIS and Textline (Reuter, pp 115, 266-269),

e patents classification - Realist (Siemens Nixdorf Informationsysteme for U.S. Patent Office,
pp 118-119, 221-227),

e ctc.

The techniques and methods developed in these systems also found their way to software reuse.

Hypertext

The modern notion of hypertext is defined as a collection of connected documents that can be
traversed with the aid of computer either linearly or via hyper-links that allow rapid transfer
between documents [23, 96]. Hyper-links are usually defined between related concepts in
different documents, semantic associations, term uses and their definition, etc. Commercial
hypertext systems are assisted with many other editing, annotation, browsing and searching tools,
such as hypertext editors, databases, navigation diagrams and maps, backtracking and history
mechanisms, search engines, etc. Current developments in World Wide Web technology promote
many practical applications of hypertext to wide-area networking.

Applications of hypertext to software development environment range from finding and
navigating between program components [31, 88], organising CASE repositories [16, 34],
maintaining software life-cycle documents [54, 55], managing development and organisational
knowledge [4, 24], supporting team design deliberations [30], dealing with requirements
elicitation [73, 74], etc.

Although many reuse projects rely on the use of hypertext, they are not restricted to the
simple hyperlink access to artefacts. Instead, they frequently combine hypertext function with
query languages, hyper-maps, history-mechanism, commonly used with generic hypertext
systems as well [4, 23, 25, 29].

Natural Language Retrieval

Syntactically and semantically driven natural language parsers found wide-spread applications in
text retrieval systems, knowledge-based information management and also processing of
program, specification and documentation texts. Hahn [65] argues that such an approach is of

16

Reuse Libraries Cybulski

particular value in large-scale text analysis that involves extraction of information from text,
generation of informative text from DBs, summarisation of text, translation, monitoring and
routing of texts, classification and retrieval, localisation of relevant portions of text relative to the
request. Hahn provides a number of requirements of the NLP system for information retrieval
(and hence, software information retrieval systems as well):

e grammars must provide a sufficiently broad coverage;

e analytic machinery must be robust with respect to the ill-formedness of language;
e grammar and parsers must be maintainable and extendible;

e grammar must handle macro structures of text;

e to minimise the computational effort grammar and domain specification must be adaptable or
include heuristics;

e computational costs must be within the acceptable feasibility regions.

Many applications in general-purpose information retrieval adopted the principles outlined by
Hahn and others [33, 78, 115, 117].

Natural language processing also found its way into supporting software development tasks,
e.g. automatic programming [66] , program design [1, 14], development of executable
specifications in natural language [51, 114], formalisation of informal specifications [11, 12, 15,
109, 120], paraphrasing formal specifications in natural language [110], requirements
acquisition and specification [36, 94, 108], requirements validation [95], recording design
reasoning [127], etc.

Few attempts have been made to apply natural language processing techniques to facilitate
software reuse. The most prominent natural language assisted reuse projects include the
following.

Girardi and TIbrahim [56, 57] describe their work on the reuse system that takes natural
language descriptions of software components, uses lexical, syntactic and semantic information to
classify them into a knowledge base of frames. The retrieval process is capable of converting a
natural language query into a frame representation and then uses the similarity measure based on
conceptual difference of terms contained in a thesaurus of term synonyms, generalisations and
specialisations. Their classification system relies on the representation of text in terms of
Fillmore's case structures [47]. The two phrases are considered to be similar when a conceptual
distance between them is small. The distance between two phrases is defined as the distance
between phrase heads plus the distances between their respective head modifiers. The distance
between individual terms is defined in an a-priori fashion.

Conceptual distances, based on lexical affinities, help a requirement analyst find abstractions
in problem descriptions in GURU and AbstFinder [59, 82]. Both environments use natural-
language descriptions of software components to index them, retrieve them and navigate between
them. The authors use uncontrolled vocabulary so that their approach could be easily scalable in
the future. In their approach they calculate word affinities by counting the frequencies of pairs of
open-class word roots that are separated one from another by no more than five words in the same
sentence. In their analysis they rely on the word's information contents measures and the observed
probability of word occurrence in the corpus of representative text. To compare relative
performance of the resolving power of different affinities across all of the documents, they
standardise it with respect to its average and standard deviation. To index software documents the

17

5.3

Reuse Libraries Cybulski

authors build an inverted file of affinity tuples. To browse a collection of system information,
documents are clustered around similarity groups [3].

Natural language processing techniques have also been used by Naka to define, reuse,
validate and transform software requirements [94]. In his system, specifications are entered in
structured Japanese, then they are automatically formalised, analysed for reusability and verified,
and finally transformed into Lisp programs. The system features Japanese natural language
interface, information retrieval system, repository of components, and the system structuring
components.

In other systems, software reuse may be additionally enhanced with the use of natural
language query language [20], lexical analysis of terms, syntactic processing of text to detect
keywords [112], etc. All such facilities are frequently used in combination with other retrieval
methods.

Analogical Reasoning

The ability to reuse software is inherently linked with the ability to recognise, classify, learn, and
reason about patterns found in applications, software components, their attributes and the
processes leading to their creation. It is also the ability to perceive similarities and reason by
analogy - one of the most fundamental aspects of human cognition [121]. The theory of
analogical reasoning explains how people judge and track similarity of concepts, how they
account for conceptual changes in development and the acquisition of knowledge, and how new
concepts are formed based on the representation and structure of existing knowledge. The use of
analogical reasoning can also be used to explain cross-domain reasoning, dealing with ill-
structured problems, and restructuring of conceptual representations [68].

Winston [124] was one of the first to use the theory of analogical reasoning to implement a
working computer system to acquire, classify and use knowledge of a given problem domain. In
his system, analogy is used to answer questions about one situation, given another situation that is
supposed to be a precedent. His system had a number of key features, e.g.

e the system was capable to dynamically add new facts to its knowledge base and to refine
existing relationships as it discovered new facts by analogy;

e the system matched its knowledge representations based on the importance of their features,
hence, paying less attention to unimportant concepts and their properties;

o it learned new facts given preference to the utilisation of analogical propagation of constraints
and reasoning;

o the system exploited rich knowledge classification scheme to identify major representational
features.

Winston determined that to effectively match analogous parts (using importance-dominated
matching), he required utilisation of a broad spectrum of information about these objects, e.g.
properties and relationships, corresponding comments, classification information, importance of
information, macro-structures and abstractions, and a variety of information measures. Anderson
and Thompson [8] further investigated the use of analogy to develop computer program able to
learn new facts in a schematic knowledge representation system. They developed the PUPS
system able to effectively discover missing object properties, functions and forms. They also
developed sufficient theory to propose methods for analogical concept refinements, knowledge
compilation, discrimination learning of new concepts, etc.

18

Reuse Libraries Cybulski

Maiden and Sutcliffe [86] proposed to use the mechanisms of analogical reasoning to guide
the process of software reuse. Their primary motive for the approach was the observation that
high-level artefacts, such as complex requirements specifications need very complex knowledge
for their effective reuse. They, hence, suggested that simple reuse techniques, such as those based
on keywords or facets, may be unsuitable to complex problem domains. Instead they decided to
use sophisticated knowledge-based problem representation and the use of analogy as the principal
mechanism for the retrieval of reusable software components. Their reuse system included the
Analogy Engine as its core component. The engine was capable of matching specifications
semantically, structurally, pragmatically and abstractly. It consisted of two subsystems, i.e. the
Analogy Matcher that identified candidate analogical mappings with abstract domain models and
the Abstraction Selector which reasoned heuristically about critical differences between candidate
abstract domain to further refine their selection. Maiden and Sutcliffe's Analogy Engine used a
simple predicate representation of domain concepts to encode object structures, state transitions,
object types, conditions on state transition, transformations, external transition events, and
information system requirements.

A similar system was also used by Lung and Urban [81] to classify program concepts, to
bridge of the gap between generic domain abstractions and features in specific application
domain and to determine general software attributes. However, in their work, the authors describe
analogical classification, which is a combination of faceted and enumerative approaches.

Other attempts at analogy-based reuse include applications in the reuse of software designs,
formal specifications [76, 92], etc.

Comparison of Methods

We have introduced several methods, techniques and tools useful in the organisation and
management of reuse libraries. All of the introduced concepts were grouped into three major
classes of library mechanisms based on the method of classifying reusable artefacts, i.e. keyword-
based, faceted and enumerative (or object-oriented). We have also identified a number of
technologies enhancing reusability of library components. Table 1 summarises and compares all
of the discussed methods.

Comparing each of the groups of the reuse methods and techniques, we come to the
conclusion that there is no clear advantage or disadvantage of their fundamental features.
However, at the same time, a number of studies were conducted to determine the methods'
usability and their effectiveness and efficiency of artefact retrieval. There seems to be a strong
disagreement on the data obtained from various experimental studies, which clearly shows that
each of the methods has its own strengths and weaknesses and can be used in some practical
applications. In the majority of cases, the most effective systems are based on the combination of
methods, either in the classification itself, the search or pre and post-processing of queries.

For example, Croft compared the statistical and knowledge-based approaches to information
retrieval [32]. He believes that the two areas of research can complement each other rather than
be in competition. He concedes that while both keyword-based and statistical methods are very
efficient, their search mechanisms not easily tailored to the needs of individual user, nor do they
facilitate making use of the structure and contents of the application domain. Knowledge-
intensive and heuristic methods, however, can provide this additional functionality to the
traditional information retrieval techniques. Jacobs further advances the idea of using hybrid
approaches to information retrieval, in particular he deeply believes that statistical methods can
significantly assist in the identification of the significant terms to be used in knowledge-intensive
natural language applications [70].

19

Reuse Libraries Cybulski

Table 1: Comparison of methods useful in the library management

Method Pre-Processing Repository | Classification Search
Keyword-based lexical analysis inverted statistical text distance
. index indexing constraints
word stemming
. . full-text free quorum-level
phonetic variants
database vocabulary searches
stop lists term partial list
phrase formation clustering searches
parsing document menus
. clusterin,
thesaurus with & query
Faceted synonyms relational manual reformulation
database
controlled
descriptor vocabulary
vectors
conceptual
tailored closeness
facets
fuzzy relevance
conceptual
distance
graphs
Object-Oriented single specialisation taxonomy
aspect . traversal
. generalisation
subsumption menus
hierarchy instantiation
class- pattern-
matching
superclass
attribute-
value
Assisting Natural language processing
Technologies
& Hypertext
Analogical reasoning

A number of people compared the effectiveness of queries in natural language vs. queries
constructed in a formal language, e.g. SQL [72]. In Jarke et al experiments, SQL performed
better than natural language on a variety of measures, but natural language queries required less
effort to use. Natural language queries were found to be more concise and required less
formulation time than those expressed in SQL. Their experiment also shows the importance of
feedback, iterative refinement of queries, training in the use of restricted natural language, and
other factors related to the total operating environment on the overall performance of users. A
performance evaluation of 15 text-analysis systems was recently conducted to realistically assess
the state of the art for detailed information extraction from unconstrained continuous text [77].
The competing systems were evaluated for recall, precision, and over-generation. Their
experimental results show that systems incorporating natural language-processing techniques are
more effective than systems based on stochastic techniques alone. Quite a different result was
obtained by Lewis and Spark-Jones [79] who clearly distinguish between text retrieval (TR),

20

Reuse Libraries Cybulski

document retrieval (DR) and knowledge retrieval (KR). They show that some statistical methods
are extremely useful, especially that in recent years it is hard to draw a clear distinction between
these methods and those using natural language processing techniques. As they point out many of
the stochastic techniques actively utilise the low-level NLU techniques as well.

Best known experiments in the use of natural language processing techniques in information
retrieval have been conducted by Salton. They showed much inefficiency and inaccuracy
associated with the use of such natural and vague user interface. He found that these problems
can be easily bypassed with the use of statistical methods [112]. At the same time, other studies
[117] compared natural language systems of different lexicon and grammar structure and size
against stochastic systems. When the systems were ranked according to the highest combined
recall and precision scores, the top 8 systems were all natural language processing systems.
Analysis of the top systems showed that:

e text analysis techniques progressed far beyond database interface applications;
¢ natural language systems outperformed the traditional IR systems;

e available techniques for semantic and syntactic processing are sufficient in text analysis,
except for discourse analysis;

o throughput exceeded 5 times that of human encoders, but the precision and recall were not as
good;

e an average of | man-years were put into development of these systems;
o the top scoring systems incorporated a diverse range of natural language techniques.

Frakes and Pole conducted an experiment, which is most relevant to our research, to compare
different methods of software component retrieval based on attribute-value, enumerated, faceted
and keyword-based classification [50]. They found that there are no significant differences
between four methods in terms of their effectiveness, as measured by recall and precision.
Different methods found different, though similar, items. Users had no clear preference for a
representation method, however, there were significant differences in user-search times between
all methods. In a more recent experiment, Mili, Ah-Ki, Godin and Mcheick [89] disputed the
results obtained by Frakes and Pole, claiming that free-text retrieval is far more superior to
faceted and keyword-based classification and retrieval. However, their experiments covered very
few subjects and are based on few queries.

Summary

Based on the results of experiments, we believe that all approaches to repository organisation and
its access are similar. Looking at the features of each method, it seems that faceted classification
has many advantages over other methods, e.g. its storage facility is compatible with standard
relational database system, its classification is simple, retrieval based on the conceptual closeness
of artefacts is intuitive. The main disadvantage of the method is the high cost of its manual
classification. Should a technique be found to improve this process, its many advantage will
outweigh its disadvantages.

21

Reuse Libraries Cybulski

Bibliography

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

Abbott, R.J. (1983): Program design by informal English descriptions. Communications of the ACM. 26(11): p.
882-894.

Agresti, W.W. and F.E. McGarry (1988): The Minnowbrook Workshop on Software Reuse: A summary report, in
Sofitware Reuse: Emerging Technology, W. Tracz, Editor. Computer Society Press: Washington, D.C. p. 33-40.

Aguilera, C. and D.M. Berry (1990): The use of a repeated phrase finder in requirements extraction. Journal of
Systems and Software. 13(3): p. 209-230.

Akscyn, R M., D.L. McCracken, and E.A. Yoder (1988): KMS: A distributed hypermedia system for managing
knowledge in organisations. Communications of the ACM. 3(7): p. 820 -835.

Allen, B.P. and S.D. Lee (1989): 4 knowledge-based environment for the development of software parts
composition systems. in 11th International Conference on Software Engineering. Pittsburgh, Pennsylvania: IEEE
Computer Society Press, p. 104-112.

Anderson, J.R. (1976): Language, Memory and Thought. Hillsdale, N.J.: Lawrence Erlbaum.
Anderson, J.R. and G.H. Bower (1973): Human Associative Memory. Washington D.C.: Winston.

Anderson, J.R. and R. Thompson (1989): Use of analogy is a production system architecture, in Similarity and
Analogical Reasoning, S. Vosniadou and A. Ortony, Editors. Cambridge University Press: Cambridge. p. 267-297.

Anick, P.G. (1993): Integrating natural language processing and information retrieval in a troubleshooting help
desk.1EEE Expert. 8(6): p. 9-17.

Arnold, S.P. and S.L. Stepoway (1988): The reuse system: Cataloging and retrieval of reusable software, in
Software Reuse: Emerging Technology, W. Tracz, Editor. Computer Society Press: Washington, D.C. p. 138-141.

Balzer, R. (1985): 15 year perspective on automatic programming. 1EEE Trans. on Soft. Eng. SE(11): p. 1257-
1268.

Balzer, R.M., N. Goldman, and D. Wile (1978): Informality in program specifications. IEEE Trans. on Software
Eng. SE(4): p. 94-103.

Bellinzona, R., M.G. Fugini, and B. Pernici (1995): Reusing specifications in OO applications. IEEE Software.
12(2): p. 65-75.

Berry, D.M., N.M. Yavne, and M. Yavne (1987): Application of program design language tools to Abbott's
method of program design by informal natural language descriptions. Journal of Systems and Software. 7: p. 221-
247.

Biebow, B. and S. Szulman (1993): Acquisition and validation: from text to semantic network. in Knowledge
Acquisition for Knowledge-Based Systems. Toulouse and Caylus, France: Springer-Verlag, p. 427-446.

Bigelow, J. (1988): Hypertext and CASE. IEEE Software: p. 23-27.

Bobrow, D.G. and T. Winograd (1977): An overview of KRL, a knowledge representation language. Cognitive
Science. 1: p. 3-46.

Brachman, R.J., D.L. McGuinness, P.F. Patel-Shneider, L.A. Resnick, and A. Borgida (1991): Living with Classic:
When and how to use a KL-ONE like language, in Principles of Semantic Networks: Explorations in the
Representation of Knowledge, J.F. Sowa, Editor. Morgan Kaufmann Pub., Inc.: San Mateo, California. p. 401-456.

Brachman, R.J. and J.G. Schmolze (1985): An overview of KL-ONE knowledge representation system. Cognitive
Science. 9(2): p. 171-216.

Burton, B.A., R.W. Aragon, S.A. Bailey, K.D. Koehler, and L.A. Mayes (1987): The reusable software library.
IEEE Software. 4(4): p. 25-33.

Buschmann, F. (1994): Software architecture and reuse - An inherent conflict? in Third International Conference
on Software Reuse: Advances in Software Reusability. Rio de Janeiro, Brazil: IEEE Computer Society Press, p.
218-219.

Buschmann, F., R. Meunier, P. Sommerlad, and M. Stal (1996): Pattern Oriented Software Architecture: A System
of Patterns. Chichester: JohnWiley and Sons.

Bush, V. (1945): As we may think. Atlantic Monthly. 176: p. 101-108.

22

Reuse Libraries Cybulski

24.
25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

Carando, P. (1989): Shadow: Fusing hypertext with Al IEEE Expert. 4(4): p. 65-78.

Carlson, D.A. and S. Ram (1990): Hyperintelligence: the next frontier. Communications of the ACM. 33(3): p.
311-321.

Castano, S. and V. De Antonellis (1994): The F3 Reuse Environment for Requirements Engineering. ACM
SIGSOFT Software Engineering Notes. 183): p. 62 -65.

Cima, A.M.d., CM.L. Werner, and A.A.C. Cerqueira (1994): The design of object-oriented sofiware with domain
architecture reuse. in Third International Conference on Software Reuse: Advances in Software Reusability. Rio
de Janeiro, Brazil: IEEE Computer Society Press, p. 178-187.

Cohen, S. (1997): Object technology, architectures and domain analysis: What's the connection? Is there a
connection? ACM Software Engineering Notes(September/October): p. contribution to WISR-8: Summary and
Working Groups Report by Stephen H. Edwards and Bruce W. Weide.

Conklin, J. (1987): Hypertext: An Introduction and Survey. IEEE Computer: p. 17-40.

Conklin, J. and M.L. Begeman (1987): gIBIS: A hypertext tool for team design deliberation. in Hypertext'87.
Chapel Hill, NC: ACM, p. 247-251.

Creech, M.L., D.F. Freeze, and M.L. Griss (1991): Using hypertext in selecting reusable software components. in
Hypertext'91. San Antonio, Texas: Acm, p. 25-38.

Croft, W.B. (1993): Knowledge-based and statistical approaches to text retrieval. IEEE Expert. 8(2): p. 8-12.
Croft, W.B. (1995): Effective text retrieval based on combining evidence from the corpus and users. IEEE Expert.
10(6): p. 59-63.

Cybulski, J.L. and K. Reed (1992): 4 hypertext-based software engineering environment. IEEE Software. 9(2): p.
62-68.

D'Alessandro, M., P.L. lachini, and A. Martelli (1993): The generic reusable component: an approach to reuse
hierarchical OO designs, in Advances in Software Reuse: Selected Papers from the Second International
Workshop on Software Reusability, P.-D. Ruben and B.F. William, Editors. IEEE Computer Society Press: Los
Alamitos, California. p. 39-46.

Dankel, D.D., M.S. Schmalz, and K.S. Nielsen (1994): Understanding natural language software specifications.
in Fourteen International Avignon Conference, AI'94. Paris, France: Ec-2, p. .

DDC-Summaries (1989): Dewpoint: The fast, well-organised Internet catalog, Web Site
http://ivory.Im.com/~mundie/DDHC/DDH.html, OCLC Online Library Center, Inc.

Deering, M., J. Faletti, and R. Wilensky (1982): Using the PEARL Al Package, , Uni of California, Comp. Sci.
Division.

Deutsch, L.P. (1989): Design reuse and frameworks in the Smalltalk-80 system, in Software Reusability: Concepts
and Models, T.J. Biggerstaff and A.J. Perlis, Editors. ACM Addison Wesley Publishing Company: New York,
New York. p. 57-71.

Devanbu, P., R.J. Brachman, P.G. Selfridge, and B.W. Ballard (1991): LaSSIE: A knowledge-based software
information System.Communications of ACM. 34(5): p. 34-49.

Dillon, T.S. and P.L. Tan (1993): Object-Oriented Conceptual Modeling. Sydney: Prentice-Hall.

DoD (1995): Sofiware Reuse Initiative: Technology Roadmap, V2.2, Report http://sw-eng.falls-
church.va.us/reuseic/policy/Roadmap/Cover.html, Department of Defense.

Ellis, G.P., J.E. Finlay, and A.S. Pollit (1994): HIBROWSE for hotels: bridging the gap between user and system
views of a database. in 2nd Int. Workshop on Interfaces to Database Systems. Lancaster University, UK: Springer-
Verlag, p. 49-62.

Embley, D.W. and S.N. Woodfield (1987): A knowledge structure for reusing abstract data types. in Ninth
International Conference on Software Engineering. Monterey, CA: IEEE Computer Society Press, p. 360-368.

Engelien, B. and M. Ronnie (1991): Natural Language Markets: Commercial Strategies. London, England: Ovum
Ltd.

Fikes, R. and T. Kehler (1985): The role of frame-based representation in reasoning. Communications of the
ACM. 28(9): p. 904-920.

23

Reuse Libraries Cybulski

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.
62.

63.

64.

65.

66.

67.
68.

69.

70.

Fillmore, C.J. (1968): The case for case, in Universals in Linguistic Theory, E. Bach and R.T. Harms, Editors.
Holt, Rinehart and Winston: New York. p. 1-88.

Fowler, M. (1997): Analysis Patterns: Reusable Object Models. Menlo Park, California: Addison-Wesley.

Frakes, W.B. and B.A. Nejmeh (1988): An information system for software reuse, in Tutorial on Software Reuse:
Emerging Technology, W. Tracz, Editor. IEEE Computer Society Press: Washington, D.C. p. 142-151.

Frakes, W.B. and T.P. Pole (1994): An empirical study of representation methods for reusable software
components. IEEE Transactions on Software Engineering. 20(8): p. 617-630.

Fuchs, N.E., H.F. Hofmann, and R. Schwitter (1994): Specifying Logic Programs in Controlled Natural
Language, 94.17, Department of Computer Science, University of Zurich.

Fugini, M.G. and S. Faustle (1993): Retrieval of reusable components in a development information system, in
Advances in Software Reuse: Selected Papers from the Second International Workshop on Software Reusability,
P.-D. Ruben and B.F. William, Editors. [IEEE Computer Society Press: Los Alamitos, California. p. 89-98.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995): Design Patterns: Elements of Reusable Object-
Oriented Software. Readings, Massachusetts: Addison-Wesley.

Garg, P.K. and W. Scacchi (1989): ISHYS: Designing an intelligent software hypertext system. IEEE Expert. 4(3):
p. 52-63.

Garg, P.K. and W. Scacchi (1990): Hypertext system to manage software life-cycle documents. IEEE Software.
7(3): p. 90-98.

Girardi, M.R. and B. Ibrahim (1994): Automatic indexing of sofiware artefacts. in 3rd Int. Conf. on Software
Reuse. Rio de Janeiro, Brasil, p. 24-32.

Girardi, M.R. and B. Ibrahim (1994): 4 similarity measure for retrieving software artefacts. in 6th Int. Conf. on
Sofiware Engineering and Knowledge Engineering. Jurmala Latvia, p. 478-485.

Goldberg, A. (1984): The influence of an object-oriented language on the programming environment, in
Interactive Programming Environments, D. Barstow, H. Shrobe, and E. Sandewall, Editors. McGraw-Hill. p. 141-
174.

Goldin, L. and D.M. Berry (1994): AbstFinder, a prototype abstraction finder for natural language text for use in
requirement elicitation: design, methodologies, and evaluation. in The First International Conference on
Requirements Engineering. Colorado Springs, Colorado: IEEE Computer Society Press, p. 84-93.

Goldstein, I.P. and B. Roberts (1979): Using Frames in Scheduling. in Winston and Brown 1979, p. 256-284.
Graham, L. (1994): Object Oriented Methods. Wokingham, England: Addison-Wesley Pub. Co.

Griss, M.L., C. Jette, W.V. Kozaczynski, R. Troy, and A.I. Wasserman (1994): Object-Oriented Reuse. in Third
International Conference on Software Reuse: Advances in Sofiware Reusability. Rio de Janeiro, Brazil: IEEE
Computer Society Press, p. 209-213.

Griss, M.L. and M. Wosser (1995): Making reuse work at Hewlett-Packard. IEEE Software(January): p. 105-107.

Hadjami, H., B. Ghezala, and F. Kamoun (1995): 4 reuse approach based on object-orientation. Its contribution
in the development of CASE tools. in Symposium on Sofiware Reusability. Seattle, Washington: ACM Press,
Software Engineering Notes, p. 53-62.

Hahn, U. (1989): Making understanders out of parsers: Semantically driven parsing as a key concept for realistic
text understanding applications. International Journal of Intelligent Systems. 4(3): p. 345-393.

Heidorn, G.E. (1976): Automatic programming through natural language dialogue: A survey. IBM J. Res.
Develop. 20(4): p. 302-313.

Henninger, S. (1994): Using iterative refinement to find reusable software. IEEE Software. 11(5): p. 48-59.

Holyoak, K.J. (1990): Problem solving, in An Invitation to Cognitive Science: Thinking, D.N. Osherson and E.E.
Smith, Editors. The MIT Press: Cambridge, Massachusetts. p. 117-146.

IMSL (1995): The IMSL Product Family, WWW Document http://www.vni.com/index.html, Visual Numerics,
Inc: Houston, Texas.

Jacobs, P.S. (1993): Using statistical methods to improve knowledge-based news categorisation. IEEE Expert.
8(2): p. 13-23.

24

Reuse Libraries Cybulski

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.
88.
89.

90.

91.

92.

93.

94.

Jacobson, 1., M. Griss, and P. Jonsson (1997): Sofiware Reuse: Architecture, Process and Organization for
Business Success. New York, NY: Addison-Wesley.

Jarke, M., J.A. Turner, E.A. Stohr, Y. Vassiliou, N.H. White, and K. Michielsen (1985): 4 field evaluation of
natural language for data retrieval. IEEE Transactions on Software Engineering. SE(11): p. 97-114.

Kaindl, H. (1993): The missing link in requirements engineering. ACM SIGSOFT Software Engineering Notes.
18(2): p. 30-39.

Kaiya, H., M. Saeki, and K. Ochimizu (1995): Design of a hyper media tool to support requirements elicitation
meetings. in Seventh International Workshop on Computer-Aided Software Engineering. Toronto, Ontario,
Canada: IEEE Computer Society Press, Los Alamitos, California, p. 250-259.

Kuipers, B.J. (1975): A frame for frames, in Representation and Understanding, D.G. Bobrow and A. Collins,
Editors. Academic Press, Inc.: New York, NY. p. 151-184.

Lee, H.-Y. and M.T. Harandi (1993): An analogy-based retrieval mechanism for software design reuse. in
KBSE'93, The Eighth Knowledge-Based Software Engineering Conference. Chicago, Illinois: IEEE Computer
Society Press, p. 152 159.

Lehnert, W. and B. Sundheim (1991): 4 performance evaluation of text-analysis technologies. Al Magazine.
12(3): p. 81-94.

Lewis, D.D., W.B. Croft, and N. Bhandaru (1989): Language oriented information retrieval. International Journal
of Intelligent Systems. 4(3): p. 285-318.

Lewis, D.D. and K. Spark-Jones (1996): Natural language processing for information retrieval. Communications
of the ACM. 39(1): p. 92-101.

Liao, H.-C. and F.-J. Wang (1993): Sofiware reuse based on a large object-oriented library. ACM SIGSOFT,
Software Engineering Notes. 181): p. 74 -80.

Lung, C.-H. and J.E. Urban (1995): An approach to the classification of domain models in support of analogical
reuse. ACM Software Engineering Notes. Proc. Symposium of Software Reusability, SSR'95: p. 169-178.

Maarek, Y.S., D.M. Berry, and G.E. Kaiser (1991): An information retrieval approach for automatically
constructing software libraries. IEEE Transactions on Software Engineering. 178): p. 800 -813.

MacGregor, R. (1991): The evolving technology of classification-based knowledge representation systems, in
Principles of Semantic Networks: Explorations in the Representation of Knowledge, J.F. Sowa, Editor. Morgan
Kaufmann Pub., Inc.: San Mateo, California. p. 385-400.

MacKellar, B.K. and F. Maryanski (1989): Knowledge base for code reuse by similarity. in Proc. COMPSAC 89.
Orlando, FL, USA: IEEE, IEEE Service Center, Piscataway, NJ, USA, p. 634-641.

Maida, A.A. and S.C. Shapiro (1982): Intensional concepts in propositional semantic networks. Cognitive
Science. 6(4): p. 291-330.

Maiden, N. and A. Sutcliffe (1991): Analogical matching for specification reuse. in 6th Annual Knowledge-Based
Sofiware Engineering Conference. Syracuse, New York, USA: IEEE Computer Society Press, p. 108-116.

Meyer, B. (1987): Reusability: the case for object-oriented design. IEEE Software: p. 50-64.
Microsoft (1992): Microsoft C/C++, Version 7.0, , Microsoft.

Mili, H., E. Ah-Ki, R. Godin, and H. Mcheick (1997): Another nail to the coffin of faceted controlled-vocabulary
component classification and retrieval. Software Engineering Notes. 22(3): p. 89-98.

Mili, H., H. Sahraoui, and 1. Benyahia (1997): Representing and querying reusable object frameworks. Software
Engineering Notes. 22(3): p. 110-120.

Minsky, M. (1975): A framework for representing knowledge, in The Psychology of Computer Vision, P. Winston,
Editor. McGraw-Hill: New York. p. 211-280.

Miriyala, K. and M.T. Harandi (1991): The role of analogy in specification derivation. in 6th Annual Knowledge-
Based Software Engineering Conference. Syracuse, New York, USA: IEEE Computer Society Press, p. 117-126.

Moineau, T., J. Abadir, and E. Rames (1990): Towards generic and extensible reuse environment. in Software
Engineering 90. Brighton, U.K.: Cambridge University Press, p. 543-573.

Naka, T. (1987): Pseudo Japanese specification tool. Faset. 1: p. 29-32.

25

Reuse Libraries Cybulski

95.

96.
97.

98.

99.

100.

101.

102.
103.

104.

105.

106.
107.
108.

109.

110.

111.

112.

113.

114.

115.

116.
117.

118.

Nanduri, S. and S. Rugaber (1995): Requirements validation via automatic natural language parsing. Journal of
Management Information Systems. 12(2): p. 9-19.

Nielsen, J. (1990): The art of navigating through hypertext. Communications of the ACM. 383): p. 296 -310.

Ostertag, E., J. Hendler, R. Prieto-Diaz, and C. Braun (1992): Computing similarity in a reuse library system: An
Al-based approach. ACM Transactions on Software Engineering and Methodology. 1(3): p. 205-228.

Pollit, A.S., G.P. Ellis, and M.P. Smith (1994): HIBROWSE for bibliographic databases. Journal of Information
Science. 20(6): p. 413-426.

Pressman, R.S. (1992): Software Engineering: A Practitioner's Approach. 3 ed. New York, N.Y.: McGraw-Hill,
Inc.

Prieto-Diaz, R. (1989): Classification of reusable modules, in Sofiware Reusability: Concepts and Models, T.J.
Biggerstaff and A.J. Perlis, Editors. Addison-Wesley Pub. Co.: New York, NY. p. 99-123.

Prieto-Diaz, R. (1991): Implementing faceted classification for software reuse. Communications of ACM. 34(5):
p. 88-97.

Prieto-Diaz, R. and P. Freeman (1987): Classifying software for reusability.IEEE Software. 4(1): p. 6-16.

Prieto-Diaz, R. and G.A. Jones (1987): Breathing new life into old software. GTE Journal of Science and
Technology. Spring: p. 23-31.

Quillian, M.R. (1968): Semantic memory, in Semantic Information Processing, M. Minsky, Editor. MIT Press:
Cambridge, MA. p. 227-270.

Ranghanathan, S.R. (1957): Prolegomena to Library Classification. Letchworth, Hertfordshire, UK: The Garden
City Press Ltd.

Reed, K. (1992): Successful large-scale reuse in Cobol, Fortran, C and Ada, , La Trobe University.
Roberts, R.B. and I.P. Goldstein (1977): The FRL Primer, , MIT, Al Lab.

Rolland, C. and C. Proix (1992): 4 Natural Language Approach For Requirements Engineering. in Fourth
International Conference CAiSE'92 on Advanced Information Systems Engineering. Lecture Notes in Computer
Science, Vol. 593: Springer Verlag, p. 257-277.

Saeki, M., H. Horai, and H. Enomoto (1989): Sofiware development process from natural language specifications.
in 11th International Conference on Software Egineering. Pittsburgh, Pennsylvania: IEEE Computer Press, p. 64-
73.

Salek, A., P.G. Sorenson, J.P. Tremblay, and J.M. Punshon (1994): The REVIEW system: From formal
specifications to natural language. in The First International Conference on Requirements Engineering. Colorado
Springs, Colorado: IEEE Computer Society Press, p. 220-229.

Salton, G. (1989): Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by
Computer. Readings, Massachusetts: Addison-Wesley Pub. Co.

Salton, G., C. Buckley, and M. Smith (1990): On the application of syntactic methodologies in automatic text
analysis. Information Processing & Management. 26(1): p. 73-92.

Schank, R.C. and K.M. Colby (1973): Computer Models of Thought and Language: Freeman & Co.

Schwitter, R. and N.E. Fuchs (1996): Attempto - from specifications in controlled natural language towards
executable specifications. in GI EMISA Workshop, Natiirlichsprachlicher Entwurf von Informationssystemen.
Tutzing, Germany, p. 163-177.

Sembok, T.M.T. and C.J. Van Rijsbergen (1990): SILOL: a simple logical-linguistic document retrieval system.
Information Processing & Management. 26(1): p. 111-134.

Shapiro, S.C., ed. (1987): Encyclopaedia of Artificial Intelligence. . John Wiley & Sons: New York, N.Y.

Smeaton, A.F. (1989): Information Retrieval and Natural Language Processing. in Informatics 10: Prospects for
Intelligent Retrieval. Cambridge, England: Aslib, The Association of Information Management, p. 1-14.

Sorumgard, L.S., G. Sindre, and F. Stokke (1993): Experiences from application of a faceted classification
scheme, in Advances in Software Reuse: Selected Papers from the Second International Workshop on Software
Reusability, P.-D. Ruben and B.F. William, Editors. IEEE Computer Society Press: Los Alamitos, California. p.
116-124.

26

Reuse Libraries Cybulski

119.

120.

121.

122.

123.

124.
125.

126.

127.

Sowa, J.F. (1984): Conceptual Structures: Information Processing in Mind and Machine. Readings,
Massachusetts: Addison-Wesley Pub. Co.

Vadera, S. and F. Meziane (1994): From English to formal specifications. The Computer Journal. 37(9): p. 753-
763.

Vosniadou, S. and A. Ortony (1989): Similarity and analogical reasoning: a synthesis, in Similarity and
Analogical Reasoning, S. Vosniadu and A. Ortony, Editors. Cambridge University Press: Cambridge. p. 1-17.

Wilks, Y. (1975): An inteligent analyzer and understander of English. Communications of the ACM. 18(5): p.
264-274.

Winston, P.H. (1975): Learning structural descriptions from examples, in The Psychology of Computer Vision,
P.H. Winston, Editor. McGraw-Hill Book Co.: New York, NY. p. 157-209.

Winston, P.H. (1980): Learning and reasoning by analogy. Communications of the ACM. 23(12): p. 689-703.

Wirfs-Brock, R.J. and R.E. Johnson (1990): Surveying current researc h in object-oriented design.
Communications of the ACM. 33(9): p. 104-124.

Woods, W.A. (1991): Understanding subsumption and taxonomy: A framework for progress, in Principles of
Semantic Networks: Explorations in the Representation of Knowledge, J.F. Sowa, Editor. Morgan Kaufmann Pub.,
Inc.: San Mateo, California. p. 45-94.

Young, M. and K. Reed (1992): Identifying reusable components in sofiware requirements specifications to
develop a natural language-like SRS language with a CRNLP, Technical Report TR005, Amdahl Australian
Intelligent Tools Programme: Bundoora, Vic, Australia.

27

