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Time Series Analysis Using QML, Part 1
Introduction and Fundamentals

Jacob L. Cybulski 
School of IT, SEBE, Deakin University

Part 1 – Introduction and fundamentals
Key concepts in classical time series
Quantum time series analysis and forecasting
QTSA data encoding and analysis
QTSA with variational quantum linear regression
Break

Part 2 – QNN inspired solutions
QTSA with variational quantum Fourier transforms
QTSA with quantum neural networks
QTSA for multi-variate time series
Summary and reflection

The aims of this session:

To provide workshop participants 
with knowledge and skills needed 
to engineer a quantum solution to 
practical time series analysis 
problems

13 October 2022
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Session Aims and Objectives
● There are many quantum algorithms 

useful in finding solutions to a practical 
data-intensive problem, such as time 
series analysis and forecasting.

So...

● Can we engineer a quantum solution to 
such a data-intensive problem?

● Yes, we will do so here! We will introduce 
Quantum Time Series Analysis (QTSA)

● We aim for the stars, but...

● In this workshop participants will 
learn QTSA fundamentals - how to:

– Understand properties of complex 
data, such as time series

– Encode such complex data into a 
quantum circuit

– Process data encoded in a quantum 
circuit

– Interpret the outcome of the circuit 
execution

– Parameterise and train a quantum 
circuit given a data set

● Some prerequisites knowledge needed:

– Variational quantum circuits concepts

– Quantum neural networks concepts

– Exposure to Python and Qiskit

● We will not seek to explore quantum 
advantage of QTSA solutions over classical 
ones but rather aim to gain experience in 
quantum manipulation and modelling of 
time series data.
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Key concepts in 
time series analysis

● Time series analysis aims to identify patterns in 
historical time data and to create forecasts of 
what data is likely to be collected in the future

● Applications include heart monitoring, weather 
forecasts, machine condition monitoring, etc.

● Times series analysis is well established with 
excellent tools and efficient methods, yet some 
organisations aim to improve them further

● Time series must have an unique index 
- a time-stamp sequencing the series

● Time series needs to be ordered by its index
● Time series will also have some 

time-dependent attributes to be modelled
● Time series can be univariate or multivariate, 

depending on whether a single or multiple 
attributes are being investigated

● Missing indeces and their dependent attributes 
may need to be imputed (e.g. interpolated)

● Index needs to be of appropriate granularity, 
e.g. years, months, weeks, days, hours, etc.

● Attributes need to be aggregated to the 
required index granularity

● Time signal often shows seasonality in data, 
i.e. a regular repeating pattern

● With aggregation and smoothing seasonality 
can be removed and trends visually identified

● Majority of forecasting methods require
time-series to be stationary, i.e. its mean, 
variance and auto-correlation are constant

● Quantum time series analysis (QTSA) is a 
promising approach to time series analysis and 
forecasting!

Sales of beer in USA
Mean not constant

Variance not constant

Non-linear trend
Visibly not stationary
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Quantum Computing
In Time Series Analysis

● Quantum computing helps solving 
problems in many disciplines, e.g.

– natural science, such as calculation of 
molecular energy or protein folding;

– finance, such as portfolio optimisation, 
pricing of financial options or credit 
risk assessment;

– optimisation, such as in vehicle 
routing or energy distribution using 
quantum-enhanced optimisation 
techniques;

– machine learning, featuring many 
general purpose algorithms, such as 
neural networks or kernel methods.

● However... 
What problems fit quantum solutions?

● What time series analysis applications 
could benefit from quantum technology?

● Quantum applications can demonstrate their 
advantage over classical solutions by relying on 
the following features of quantum systems:

– Randomness of observable results 
(measurement of quantum states)

– Pursuing alternative decisions concurrently 
(superposition of quantum states)

– Controlling parallel choices with constraints 
(entanglement of quantum systems)

● QTSA example where all three principles have 
been applied – financial option price prediction

All possible price evolution paths
can be considered in parallel

Generated price fluctuations
are truly random

Price evolution can 
be constrained to 
the financial model 
governing the 
market price 
behaviour

In the end, the price 
estimate can be 
based on the 
expectation value, 
the payoff function, 
etc.
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Practice 1
Preparation and orienteering

● Create an IBMQ account 
and login

● Access ironfrown code:

● Download workshop files:

● Upload files to IBMQ lab: 

● Run and explain utils:

URL: https://quantum-computing.ibm.com/

URL: https://github.com/ironfrown/qtsa_workshop

Code → Download ZIP

Follow ironfrown GitHub repo Readme file

Follow live / recorded session and demos

Plan
● Show access to GitHub ironfrown
● Show access to IBMQ Labs
● Show access to jacobcybulski.com
● Demonstrate IBMQ Labs setup
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Variational Quantum Circuits
Quantum problem solving

Quantum circuits are static, so new data 
requires creation of new circuits. Yet, we can 
create “variational” circuits - circuit templates 
with parametrised gates – e.g. P, Rx, Ry and Rz 
gates with varying degrees of rotation, which 
can be optimised using some ML algorithm.

To train a variational circuit, its parameters are 
repeatedly instantiated, the circuit executed, the 
states of its qubits measured and returned.  

The measurement outcomes can be re-interpreted into a 
desired form (binary, integer or float). Such results are 
compared against the expected values (using training 
data) and used by the cost function to guide the selection 
of new values for the process parameters, which are then 
combined with new input parameters to form the next 
version of the circuit, and improving performance.

Data
Encoding

State
MeasurementProcessing

Quantum registers
initialised to |0>

Classical registers
with outputs measured as 0 or 1 

Cost
Fun

cost is minimised
during circuit training

Input Parameters

Process Parameters

Training
Data Set

Circuit 
optimisation

measured states are 
interpreted to match 

training data

Feature Map Ansatz
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In what order?

At 1966 Cannes Film Festival the following 
conversation was observed between two 
famous film directors: Henri-Georges Clouzot
and Jean-Luc Godard.

Clouzot: But surely you agree, 
M. Godard, that films should have 
a beginning, a middle part and an end?

Godard: Oui, 
but not necessarily in that order!

Albert Einstein: But surely you agree, 
Herr Bohr, every quantum circuit should 
have data encoding, data processing and 
measurement of its states?

Niels Bohr: Ja, 
but not necessarily in that order!

Wikipedia: https://en.wikipedia.org/wiki/File:Contact_print.jpg

Albert Einstein (mumbles): Hmmm, 
God does not play dice (ahem)... 
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Ways of encoding time series data 
for the quantum system processing 

● Quantum systems have no memory!
● Quantum circuits take no data!

● The only way of obtaining and retaining 
information in a quantum system is via:

– structure of a quantum circuit
(as done in variational methods)

– states of quantum computation
(as done in adiabatic optimisation)

● In this presentation we will focus on the first 
option – the variational methods

● In variational time series analysis, the key 
concerns are:

– data encoding strategy
– circuit optimisation strategy

There are many different quantum data 
encoding / state preparation methods:

● basis encoding, with qubits acting as 
bits in the encoded number (logical / 
integer) to be processed later in the circuit

● angle encoding, where qubit rotation 
(float) represents the value of data

● amplitude encoding, where each data 
point is encoded as expectation value 
of circuit measurement (float), usually 
no further data processing is present

● Others: QuAM, QRAM, Qsample, ... 

We will explain these approaches by QTSA 
demonstration of:

● Quantum regression (function fitting)
● Quantum Fourier transform (function fitting)
● Quantum neural networks (pattern detect.)Schuld, Maria, and Francesco Petruccione. Machine Learning with Quantum Computers. 2nd ed. 

2021 edition. Springer, 2021. https://link.springer.com/book/10.1007/978-3-030-83098-4.

Note similarities
with measurement 

interpretation!
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Ways of Measuring
Outcomes

There are many ways of obtaining the 
outcome of a circuit execution.

● We can select all qubits to measure
● We can select only those qubits that 

give you (theoretically) the most 
appropriate result

● We can interpret the counts of multiple 
measurements

● We can reinterpret circuit measurements 
into different combinations of outcomes, 
e.g. to predict larger QTSA horizons

or

or

Repeated circuit measurement can be interpreted as 
outcomes of different types, e.g. 

● as a binary outcome 
(e.g. a single qubit measurement), 

● as a bitwise representation of an integer number 
(e.g. most frequent combination of multi-qubit 
measurements), or 

● as a value of a continuous variable 
(e.g. expectation value of a specific outcome).

horizon 1

horizon 2

horizon 3

integer logical

float
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Putting it all into practice



  11 / 33

Variational quantum linear 
regression and polynomial fitting

We are trying to find a and b to 
satisfy a linear equation:

We will encode a normalised 
vector y as a quantum state        

We will identify a and b in the 
optimisation process, which 
considers a sequence of states:

The optimisation will search for 
such a and b, and thus
to minimise the cost function 
which tries to maximise the 
similarity of       and

What’s remaining is to create a 
quantum circuit able to calculate
         based on pairs a and b, so 
that the cost function could drive 
the optimisation process

The required circuit can be built into the 
cost function.

It will rely on the amplitude encoding 
of sample data, which ensures that 
measured expectation values of the 
composite qubit states corresponds to 
data point values

We encode normalised ax+b into half of 
the qubits, and normalised y into the 
remaining ones. These encoded values 
will constrain possible circuit states. 

The Hadamard gate H allows measuring 
the expectation value, which implies the 
value of the inner product of interest
(for more details, see ref: Qiskit 2020)

Bravo-Prieto, Carlos, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles. 
“Variational Quantum Linear Solver.” ArXiv Preprint ArXiv:1909.05820, 2019.

Qiskit. “Variational Quantum Regression”, in Learn Quantum Computation Using Qiskit. Textbook, 2020.
https://qiskit.org/textbook/ch-demos/variational-quantum-regression.html

“Not necessarily in that order”
Possibly in an unexpected part 

of a quantum solution

The variational linear regression methods can 
be extended to polynomial fitting 
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Practice 2
Linear regression (Demo)

Plan
● Navigate IBMQ Labs
● Explain there are utilities (for self-exploration)
● Explain there is linreg demo (for self-exploration)
● Show results on the next page
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Experiments R1-5

f(x): 0.5x + 0.2

Linear
Regression

Polynomial
Fit

Linear regression over 
purely linear data.

Data is only 32 points.
Fitting was very slow!

Only one optimiser gave 
good fit (Powell).

Different optimisers give 
vastly different results.

Initial values to the 
optimisation had huge 
impact on the result. f(x): 0.3-0.5x-x2+2x3

Linear regression over 
polynomial data.

Data is only 32 points.
Here training data is 
only 32 points.

Data fitting was 
extremely slow (esp. 
Nelder-Mead).

When initial values were 
close to zero,
optimisers were giving 
good results.

With the exception of a 
classical solution all fits 
are slightly offset!

Polynomial fit of 7th 
order over complex 
trigonometric data with 
trend.

Data was 32 points.

Selection of initial 
coefficients was crucial.

As a result of good 
starting point (close to 
zero), the fit was quite 
good, yet not optimal, 
regardless of which 
optimiser was in use.

Polynomial fit of 7th 
order over 5th order 
polynomial.

Data was 32 points.

Data fitting was very 
slow.

As the initial coefficients 
were random, none of 
the optimisers could fit 
the curve.

f(x): -(8x-4x2+0.2x3-0.1x5)/70+0.1f(x): 0.5+0.09x+0.09sin(3x)+0.15cos(6x)
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Variational quantum linear regression
Reflections

● Variational quantum regression can only be used to fit 
linear data (with some noise)

● Its training convergence is highly sensitive to the 
optimisation strategy, optimisers’ hyper-parameters, and 
their initialisation

● While the approach taken can  be easily adapted to fitting 
higher order polynomials, only certain types of functions fit 
successfully (mainly those appearing in publications)

● Potentially, barren plateaus affect optimisation

● As compared with classical methods of linear/polynomial 
fitting, experiments with variational quantum regression 
indicate the adopted quantum regression approach is not 
promising

● We will therefore seek other approaches to time series 
analysis, its data fitting and forecasting!

It is worth noting that other, more recent methods 
such as QSVT (Quantum Singular Value 
Decomposition), can assist fitting any function 
(or data) with higher-order polynomials
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End of Part 1
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Time Series Analysis Using QML, Part 2
QNN Inspired Solutions

Jacob L. Cybulski 
School of IT, SEBE, Deakin University

Part 1 – Introduction and fundamentals
Key concepts in classical time series
Quantum time series analysis and forecasting
QTSA data encoding and analysis
QTSA with variational quantum linear regression
Break

Part 2 – QNN inspired solutions
QTSA with variational quantum Fourier transforms
QTSA with quantum neural networks
QTSA for multi-variate time series
Summary and reflection

The aims of this session:

To provide workshop participants 
with knowledge and skills needed 
to engineer a quantum solution to 
practical time series analysis 
problems

13 October 2022
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Variational quantum 
Fourier transforms

We consider a quantum model, 
which takes a vector of 1D data.

The model fθ consists of n layers, 
each with encoding block Sn(x), 
implemented as a Pauli rotation 
by x૯[-π,+π], and a trainable block 
Wn(θn), parametrised by θn.

The circuit can be structured as a 
series of Wn(θn) Sn(x) layers,

over a single qubit. 

Alternatively, Sn(x) blocks can be 
arranged in parallel, with Wa/b(θ) blocks 

before and after, over multiple qubits.

The circuit parameters can trained by 
a suitable ML optimiser.

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "The Effect of Data Encoding on the Expressive 
Power of Variational Quantum Machine Learning Models." Physical Review A 103, no. 3 (March 24, 2021)

Pérez-Salinas, Adrián, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. “Data Re-Uploading for a 
Universal Quantum Classifier.” Quantum 4 (Feb 6, 2020): 226.

PennyLane. "Quantum models as Fourier series", 2021. 
https://pennylane.ai/qml/demos/tutorial_expressivity_fourier_series.html

W1 S1 W2 S2 W3 S3 W4 S4 W5 S5 W6

Wb WaSn

The fθ circuit acts as 
as a Fourier-like sum 
of “frequency” 
components.

The components are 
determined by Sn(x) 
“frequencies” and 
Wn(θn) coefficients.

Re-uploading of Sn(x) 
allows to iteratively 
vary and accumulate 
rotations Wn(θn)Sn(x).

Serial Model

Parallel Model

Pauli rotation gate
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Practice 3
Fourier Transform (Demo)

Plan
● Navigate own Jupyter Lab
● Walk through Serial Model demo
● Walk through Parallel Model answers (with hidden cells)
● Explain Parallel Model problem
● Explain results on the next page
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Experiments F1-8
f(x): sin(x)

f(x): (sin(5x) + 0.5*sin(8x)) / 4 + 0.5

Simple serial model 
fits the sine function 
incredibly well! 

The fit deteriorates 
with the number of 
layers

Parallel model 
greatly improves the 
performance, 
however, it is not 
better than the 
simplest serial 
model!

Note that a simple 
experiment can 
show that the serial 
model directly 
implements the sine 
function, so it works 
so well!

Serial
Model

Parallel
Model

Serial model was 
not able to cope 
with any deviation 
from a simple sine 
function, e.g. more 
complex curve or 
inclusion of a trend, 
degrades the fit.

Parallel model 
degrades 
with the number of 
parameters 
(qubits x layers).

Objective function 
was highly volatile.

The parallel model 
does not help 
(much) with 
complex functions.
Perhaps data re-
uploading could be 
beneficial here?
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Quantum Fourier transforms
Reflection

● Serial quantum Fourier transforms work amazingly well with 
a single qubit sine curve fitting – not surprising as qubit 
measurement follows a cosine function

● With increased depth of a serial circuit, the performance 
decreases

● This is where the parallel quantum Fourier transform steps 
in and improves the outcome

● However, in both cases the more model parameters, the 
worse was the outcome (volatility of the objective function)

● Any deviation from a sine function, severely degrades the 
fit of both approaches

● The hypothesis that the parallel model could improve if we 
were to adopt the serial model’s data re-uploading proved 
to be incorrect

● Worth noting that COBYLA and NELDER_MEAD excel in their 
task, while L_BFGS_B is painfully slow
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Neural Nets for 
Time Series Analysis

● The simplest neural networks, such as Multi-
Layer Perceptrons (MLPs), map numeric inputs 
into numeric or categorical outputs via layers of 
“neurons”, interconnected by weighed links, and 
calculating weighted sums with non-linearity

● The weights of neural links are trained within an 
optimisation process, such as gradient descent, 
by matching the calculated vs expected outputs

● Some types of deep neural networks can be 
trained for time series analysis, including: 
forecasting, classification and clustering, e.g.

– Recurrent Neural Networks (RNN)

– Long Short-Term Memory (LSTM) nets

– Gated Recurrent Units (GRU) nets

● Unlike MLPs, networks such as RNN, LSTM and 
GRU are able to retain and rely on memory of 
the past training data

● MLPs and RNNs are similar in their structure to 
some QTSA quantum solutions (circuits)

Input encoding

Data processing

Neural Net

t=0 t=1 t=2 t=... t=18 t=19

t=18 t=19 t=20

Dense Layer

Warmup

Label

Embedding LayerInput

Encoded Inputs

Output encoding

Outputs

RNN

Time
Relations
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Quantum 
neural networks

● A typical QNN consists of two main 
components, i.e. a feature map and an 
ansatz (also called variational model)

● The feature encodes the input data and 
prepares the quantum system state, using as 
many features as there are qubits

● The ansatz consists of several layers and, 
similarly to a classical NN, is responsible for 
inter-linking the layers - this is accomplished 
by trainable Pauli rotation gates and 
entanglement blocks

● Finally, the qubit states are measured and 
interpreted as QNN output

● In contrast to function / data fitting, 
QNNs are able to perform pattern 
matching, i.e. work with a sequence of 
values themselves rather than with the 
mapping between an index and values

● In the following experiments, we will 
adopt a sliding window approach to 
structuring the time series

● However, the standard QNN model does 
not lean itself to time series analysis, i.e.

– You are limited to the TS window of size 
equal to the number of qubits

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. “The 
Power of Quantum Neural Networks.” Nature Computational Science 1, no. 6 (June 2021): 403–9. 

https://doi.org/10.1038/s43588-021-00084-1.

Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020. 
https://towardsdatascience.com/quantum-neural-networks-for-fintech-dddc6ac68dbf.

Feature Map Ansatz

Pattern
Matching

In Qiskit
VQR Model
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QNN inspired QTSA
Sliding windows / Serial model

● Experiments show that typical QNN (VQR) do 
not perform well with time series data

● The solution is to extend the Fourier quantum 
model into the multi-qubit QNN

● This required creation of a custom quantum 
circuit, which consists of encoding blocks 
Sn(x) and trainable ansatz blocks Wn(θn)

● The Fourier parallel model simply replicated 
the Sn(x) blocks, which limited the TS window 
size to the number of qubits, and which was 
tested to perform quite poorly

● An alternative was to adapt the Fourier serial 
model and distribute the TS window data 
across the encoding blocks Sn(xk), where each 
block would hold as many data points as 
there are qubits (k)

● Should the last block Sn(xk) be only partially 
filled with TS data, then the identity gates are 
used to make the complete block

● The circuit is then trained by optimising the 
parameters of trainable blocks Wn(θn) 

S1W1 S2W2 W3

time series
sliding window

window mapping
into S(x) blockstrainable blocks W(θ) / ansatz
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S1W1 S2W2 W3

time series with a 
sliding window

encoding
blockstrainable ansatz

feature map

Sliding Window 
Serial Model

Quantum
Neural Network

QTSA
Data overloading / 

Unlimited size
of TS window

TS window 
limited to the 

number of qubits

Trainable ansatze 
separate encoding 

blocks 

Trainable 
state preparation

Potential for 
encoding multivariate TS

x

Single trainable 
ansatz at the circuit 

end only
trainable ansatz

sliding window
encoding

trainable ansatztrainable ansatz
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Practice 4
QNN Inspired QTSA (Demo)

Plan
● Explain there is standard QNN demo
● Walk through Sliding Window answers (with hidden cells)
● Explain Sliding Window problem
● Explain results on the next page
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Experiments N1-N8 f(x): (sin(5x) + 0.5*sin(8x)) / 4 + 0.5

Real-world data, 
such as records of 
beer sales in USA, 
also featured in our 
research.

The preliminary 
experiments 
indicate that more 
work is required to 
make the proposed 
model practical.

The proposed 
methods need new 
circuit measurement 
strategies and 
inclusion of 
non-linearities.

Sliding
Window
QNN

QNN model worked 
well only for simple 
data sets and 
shorter TS windows.

With more complex 
data and longer TS 
windows, its 
performance 
significantly 
degraded.

Sliding 
Window
Parallel 
Model

Sliding window 
parallel model 
displayed pretty 
good prediction of 
seasonality.

However, its failed 
predicting the data 
amplitude.

Parallel models tend 
to generate very 
large circuits, which 
may adversely 
affect the results.

Sliding 
Window

Serial 
Model

Sliding window 
serial model 
demonstrated good 
prediction of both 
seasonality and the 
signal amplitude.

The model does not 
re-upload data, 
however, it 
overloads TS data 
points.

This model can 
handle TS windows 
longer than the 
number of qubits 
available!

The model  
prediction 
significantly 
improved, 
well above the 
classical MLP!

World
Data?
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Opportunities for
Multivariate TS Analysis

● The serial model with a sliding window 
accommodates multi-variate time series

● Trainable ansatz blocks Wn(θn) are generated 
in exactly the same way as previously

● However the encoding blocks Sn(x) 
interweave the feature values taken from the 
multi-variate sliding window

S1W1 S2W2 W3

multi-variate 
time series

multi-variate
sliding window

window mapping
into S(x) blockstrainable blocks W(θ) / ansatz

feature 1

feature 2
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Quantum neural networks
Reflection

● QNNs are a promising approach to QTSA and forecasting.
● Unlike other QTS methods, QNNs are capable not only of data 

fitting but also pattern matching and prediction.
● However, the standard QNN model consisting of a feature map and 

a trainable ansatz, demonstrate poor performance when trained 
with more complex data.

● The proposed model, extends the single-qubit quantum Fourier 
serial model to work with multiple qubits and with complex data.

● The model relies on the TS data continuity to reduce the need for 
re-uploading its input data, and instead overloads the qubits with 
blocks encoding of the entire TS window of data points.

● The model is able to encode more data than the number of its 
qubits, the preliminary experiments demonstrate its performance 
approaching that of the classical MLP, and they can accommodate 
multivariate time series.

Bausch, Johannes. “Recurrent Quantum Neural Networks.” Advances in Neural Information Processing Systems 33 (2020): 1368–79.

Chen, Samuel Yen-Chi, Shinjae Yoo, and Yao-Lung L. Fang. “Quantum Long Short-Term Memory.” In ICASSP 2022-2022 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), 8622–26. IEEE, 2022.

Other researchers in QNNs 
proposed quantum models 
of RNNs and LSTM!



  29 / 33

Things we have not covered...

Published (preliminary) research

● Quantum stochastic / Bayesian TS 
models (e.g. random walk)

● Quantum anomaly detection in time 
series

● Quantum RNN and LSTM

● qGANs and quantum variational 
auto-encoders for QTSA

● Quantum natural language analysis 
(text is a sort of TS)

● Applications, e.g. in finance, 
medicine, signal and image 
processing

Other opportunities

● Non-stationary time series

● Multi-variate time series analysis

● Volatility detection in time series

● Chaotic behaviour over time

● Quantum/classical scenario analysis

● Creation of pure quantum QTSA

● And more…

Quantum time series analysis is still in a 
barren plateau of QML research!
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Why in this session haven’t we seen 
quantum advantage of QTSA models?

● This session in two parts focused on the 
fundamentals of quantum time series 
encoding, processing and measurement.

● As you recall quantum applications, 
which successfully compete against 
classical approaches, take advantage of 
three quantum phenomena, i.e. state 
superposition, entanglement and state 
collapse on measurement.

● All QTSA models presented here have 
taken advantage of these quantum 
phenomena and yet did not perform 
better than the classical systems!

● At the same time note that the 
presented quantum solutions:

– Were created by brute force

– Had no theory of their data

– Did not prepare their data

– Did not plan their measurement

– Had ad hoc processing

– We made no attempt to detect / 
eradicate any training issues

● Quantum advantage of QTSA 
models is still part of active 
research.

To gain quantum advantage in QTSA will be 
the focus of our future Part 3

As many 
other QML 

models!



  31 / 33

Bird-view of Quantum Time Series Analysis
Summary, reflections and questions

Quantum neural nets 
suggest the solution

to QTSA

Quantum Fourier 
transforms are 

promising

QC creates 
opportunities for TSA

TS processing 
requires data storage

Variational quantum 
regression is too

simplistic
Quantum systems
have no memory

QNNs with data
re-uploading and 

overloading are key

Variational quantum 
models effectively 
simulate memory
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QTSA Workshop Session Tasks

1) Easy: Study serial quantum Fourier transform TS fit.
Test it with various data sets, factors and optimisers.
Analyse, compare and find the best combination.

2) Medium: Implement a parallel quantum Fourier transform TS fit.
Test it with various data sets, factors and optimisers.
Analyse, compare and find the best combination.

3) Hard: Implement a serial sliding window QNN TS forecaster.
Test it with various data sets, factors and optimisers.
Analyse, compare and find the best combination.

4) Challenge: Modify the SSW QNN for multi-variate TS data.
Test it with various data sets, factors and optimisers.
Analyse, compare and find the best combination.

In your 
own time!
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End of Part 2

All images are either the author’s own, open source, or
from the internet’s source of freely usable images: https://unsplash.com/ 
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