Introduction

Key concepts in classical time series

Quantum computing brief

Quantum time series analysis and forecasting
QTSA data encoding and analysis

QTSA with variational quantum linear regression
QTSA with variational quantum Fourier transforms
QTSA with quantum neural networks

QTSA with real data

Summary and reflection

- ; Quantum computing is modern magic
IBM quantum computer - R) Quantum machine learning turns data into magic

Key Concepts in Quantum Time Series Analysis (QTSA)

Jacob L. Cybulski
School of IT, SEBE, Deakin University

1BM

Presenter

Challenge Fall
Achievement/
d

Jacob Cybulski

jacob.cybulski@deakin.edu.au

Honorary AlProf

In Quantum Computing
School of IT, SEBE
Deakin University

Melbourne, Australia Research

* Quantum computing

* Quantum machine learning

. Quantum time series analysis
and anomaly detection

* Classical machine learning

* Data visualisation

Personal

* Recreational cycling

. Reading science and Sci-Fi

* Quantum challenges and
hackathons

Original function vs fit and predictions

20
0 S 10 150 200 250 30 30 400 450 50 . |
Frequency (Hz) | 14

Brget function
Fitted model
® Taing data (noisy)

Classical TS Methods
Key concepts in classical time series analysis

DAILY CONFIRMED NEW CASES (7-DAY MOVING AVERAGE)

A n a Iys i S Of t h e p a St Outbreak evolution for the current most affected countries
Prediction of the future

600k

We are bombarded daily with volumes of time-based
information, often in the form of data points in time, in
other words - a time series

As itis now...
400k

Confirmed new cases

* Time series visualisations are used to inform experts, ok
influence government policies and shape public i e :
Opinion (e.g. about COVID) ."-i---JIuIZOzO Jan 2021 Jul 2021 Jan 2022 Jul 2022

* Time series analysis aims to identify patterns in
collected historical data and to create forecasts of
what data is likely to be collected in the future

* Sample applications include heart monitoring, weather
forecasts, fault detection in rotating machinery, etc.

- Times series analysis and forecasting is an established
and trusted discipline, with excellent tools and highly
efficient methods

* Organisations that rely on time-based information are
in the pursuit of more efficient or more effective time
series analysis

 Quantum time series is a possible approach to time N
series analysis and forecasting

Taiwan*

'
—us!
Frahce

Russia
Australia Ukraine

Japan Germany
Korea, South ltaly

Key concepts in
time series analysis

As with any data set, time series needs some
pre-processing for its effective use

Time series must have an index
- a time-stamp sequencing the series

It is often assumed that index is a key,
i.e. index values are unique

Time series needs to be ordered by its index

Time series will also have some
time-dependent attributes to be modelled

Time series can be univariate or multivariate,
depending on whether a single or multiple
attributes are being investigated

Missing indeces and their dependent attributes
may need to be imputed (e.qg. interpolated)

A series can be defined over non-time entities,
e.g. a landscape line or a DNA sequence

Index needs to be of appropriate granularity,
e.g. years, months, weeks, days, hours, etc.

Attributes need to be aggregated to the
required index granularity

Time signal often shows seasonality in data,
i.e. a regular repeating pattern

With aggregation and smoothing seasonality
can be removed and trends visually identified

Majority of forecasting methods require
time-series to be stationary, i.e. its mean,
variance and auto-correlation are constant

Time series analysis needs data storage

Sales of beer in USA

Mean not constant

Variance not constant

Non-linear trend
Visibly not stationary

50 100 150 200 250 300
Range

Neural Nets for =k | .| |
Ti Seri Analvsi S o WMo fo il e B o
Ime Series Analysis ¢ -: . . TN s
- " i | ® | o " o’ B
* The simplest neural networks, such as Multi- L o o o " * o b
Layer Perceptrons (MLPs), map numeric inputs L. U o : : . " ;
into numeric or categorical outputs via layers of - em e . . o e o
“neurons”, interconnected by weighed links, and oy & - g}é\ C
calculating weighted sums with non-linearity el &F & a\:%ig‘ o
* The weights of neural links are trained within an kA € e | o

optimisation process, such as gradient descent,
by matching the calculated vs expected outputs

° Some types of deep neural networks can be Input —> Embedding Layer Input encoding
trained for time series analysis, including:
forecasting, classification and clustering, e.q.

- Recurrent Neural Networks (RNN)

t=0 t=1 t=2 t=... t=18 | | t=19 | Encoded Inputs

- Long Short-Term Memory (LSTM) nets T\Jﬁ T\Jﬁ
_ Time [[] [Dat .
- Gated Recurrent Units (GRU) nets Relations T ata processing
* Unlike MLPs, networks such as RNN, LSTM and R |
GRU are able to retain and rely on memory of | Warmup | |t=18 | | t=19 | |t=20| Outputs
the past training data A \ /
* Neural networks and RNNs are similar in their RN Output encoding | Dense Layer —> Label

structure to quantum solutions (circuits)

Fundamental Quantum Concepts
Approach, qubits and circuits, process and principles

Quantum Computing
Approach and applications

Quantum computing allows information
processing to be accomplished by utilising
the behaviour of matter and light on the
atomic and subatomic scale

Quantum computing aims at solving
problems in many disciplines, e.g.

- natural science, such as calculation of
molecular energy or protein folding;

- finance, such as portfolio optimisation,
pricing of financial options or credit
risk assessment;

- optimisation, such as in vehicle
routing or energy distribution using
several guantum-enhanced
optimisation techniques;

- machine learning, featuring many
general purpose algorithms, such as
neural networks or kernel methods.

Quantum applications can demonstrate their

advantage over classical solutions by relying on

the following features of quantum systems:

- True randomness of observable results
(measurement of quantum states)

- Pursuing alternative decisions concurrently
(superposition of quantum states)

- Controlling parallel choices with constraints
(entanglement of quantum elements)

An example where all three principles are
applied - financial option price prediction

All possible price evolution paths
can be considered in parallel

Possible price paths for a QuantumTech share /

Generated price fluctuations N /
are truly random N

Price evolution can
be constrained to
the financial model
governing the
market price
behaviour

In the end, the price
estimate can be
based on the
expectation value,
the payoff function,
etc.

Quantum registers Input

Preparation

Quantum Machine Learning
Process of quantum problem-solving

initialised to |0> \\

Qubit is the most important quantum tech concept.
It is a unit of quantum information. It is also a device able
to manipulate a single unit of such information.

Optimisation Algorithm

: Ansatz Processing ' Output
| with parameterised gates Measurement
—_—— I ________________________ I ________ A
| Random |

qubits can be
entangled

™~ Input Parameters

qubits are in
3 superposition

meas /t
Classical registers
with outputs measured as 0 or 1

Quantum circuit is the model of quantum computation.

It identifies qubits, their initialisation to some input states, a
sequence of quantum gates performing operations on qubits
(such as rotation or entanglement), and measurements
allowing observation of qubit states, on circuit execution.

Quantum circuits are static - new data requires new
circuit. However, it is possible to create “variational”
circuits, which are templates with parametrised
gates, e.g. P, Ry and Rz varying degrees of rotation,
which can be optimised using some ML algorithm.

measured values are
interpreted to match
training data

cost is minimised
during circuit training

To find optimum circuit parameters, the circuit is
repeatedly executed and its outputs measured.
Outputs are then compared against the expected
values using a cost function, so the optimiser could
determine new values for the process parameters.

How qubits work
In a simplified way!

Qubit is often “implemented” as a single
elementary particle, e.g. electron or photon

Qubit represents a state of such a particle, e.g.
an electron spin (up or down) or photon’s linear
polarisation (horizontal or vertical)

Qubits are in a state of superposition of some
basis states, so the electron spin is not just
up or down but a combination of these basis

states, e.g. /3)

7X%+§Xd0wn

When we measure the qubit, its state collapses
probabilistically into one of the basis states
up or down, measured as simple values, e.g.

* 0/ 1for up or down for electrons, and
* 0/1 for horizontal or vertical for photons.

Mathematically a qubit state can be represented as

a vector (a point) in space of all possible states.

The qubit state space has its own coordinate system,
defined by the basis vectors, which are orthogonal unit
vectors (of length=1), for example in 2D these could be
vectors (1, 0) and (0O, 1), denoted as |0> and |1>.

N i valid |0> and |1> are vectors,
. | All valid states are on not values 0 and 1, which
Basis state g4 - __the circle of radius = 1 is what we observe on
©.1=[1> SN qubit measurement
N
AN
br———m (a,b)=a(1,0)+b(0,1)
//'\' I : 2 2 —
(\Q\‘(\ } \ a+b=1 Qubit measurement
w Lo returns 0 or 1, but
b repeated measurements
Ly X ;)
0.0) 2 Basis state provide expectation
(1,0) = 0> values of observing 0 or 1

As we can see, any vector (a, b) is a (linear)
combination of the basis vectors (1, 0) and (0, 1)
— we call this superposition.

In reality, this is more complex as
qubit states are described by two
complex numbers, each with real and
imaginary parts, making it 4 reals.

Pauli
rotations

-

With a clever “projection” trick we can
depict the qubit state in 3D (not 4D),
e.g. as a Bloch sphere.

Experiments

Data Encoding and Data Analysis

@ﬂﬂﬂﬁ
i wm\ 00

' & l 1 11
a9 l‘. 1
BB ﬂl_ 0

’ 10 001 00w
00 10 10 01;1211'

* Quantum systems have no memory!
* Quantum circuits take no data!

* The only way of obtaining and retaining
information in a quantum system is via:

- structure of a quantum circuit
(as done in variational methods)

- states of quantum computation
(as done in adiabatic optimisation)

* In this presentation we will focus on the first
option - the variational methods

* |In variational time series analysis, the key
concerns are:

- data encoding strategy
- circuit optimisation strategy

Schuld, Maria, and Francesco Petruccione. Machine Learning with Quantum Computers. 2nd ed.
2021 edition. Springer, 2021. https://link.springer.com/book/10.1007/978-3-030-83098-4.

Ways of utilising time series data
in quantum system computation

There are many different quantum data
encoding / state preparation methods:

* basis encoding, with qubits acting as
bits in the encoded number (int) to be
processed further in the circuit

* angle encoding, where qubit rotation
(real) represents the value of data

 amplitude encoding, where each data
point is encoded as expectation value
of the measured circuit (real), usually
no further data processing is present

* Others: QuAM, QRAM, Qsample, ...

We will explain these approaches by
demonstration of:

 Quantum regression (function fitting)
* Quantum Fourier transform (function fitting)
* Quantum neural networks (pattern detect.)

L pajaudisyur

Jayuny aq ued

Variational quantum
linear regression ‘i

We aretryingtofindaandbto & =q7 +1b
satisfy a linear equation
1 1

The required circuit will be built into

We will encode a normalised ly) = =—71 = —(a? +b) the cost function. It will rely on the
vector y as a quantum state |y) Cy Cy amplitude encoding of sample data,

1 which ensures that measured
We will identify a and b in the ¢) = —(a@ +b) expectation values of the composite
optimisation process, which C¢ qubit states corresponds to data values
considers a sequence of states: |¢O>_’ |¢1> oo |¢n) We encode normalised ax+b in qubits
The optimisation will search for ~ Starting with |¢o) = |¢) (ao, bo) qo and g1, and normalised y in qubits
such a and b, and thus \Qﬁ) 5 gz and 3. These encoded values act as
to minimise the cost function C), Cp = (1—(yl9)) constraints on the calculation. The

which tries to maximise the

Hadamard gate H allows measuring the
similarity of |y) and |¢)

Can be adapted for expectation value, which implies the

’

L . fitting higher order ;5| 1a of the inner product of interest
What’s remaining is to create a vy polynomials : i
O —» Y (for explanation, see ref: Qiskit 2020)
guantum circuit able to calculate (y|</5>
n pair nd b, so |
¢> based 0 pa . >aad . Bravo-Prieto, Carlos, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles.
that the cost function could drive “Variational Quantum Linear Solver.” ArXiv Preprint ArXiv:1909.05820, 2019.

the Optl misation prOCGSS Qiskit. “Variational Quantum Regression”, in Learn Quantum Computation Using Qiskit. Textbook, 2020.
https://qiskit.org/textbook/ch-demos/variational-quantum-regression.html

x0=[0.5, 0.5], max_iter=200

BFGS R2: -27.3627
BFGS MAPE: ©.9512
COBYLA R2: -6.9824
COBYLA MAPE: ©.4836
Nelder-Mead R2: -3.6006

Nelder-Mead MAPE: ©.3436

Powell R2: B.7055
Powell MAPE: 0.0901
trust-constr R2: -27.2477

trust-constr MAPE: 0.9492

Here data is only 16 points

This data fitting was surprisingly slow!

Different optimisers give vastly different results,
regardless of their hyper-parameters!

Linear

Experiment R1: Target - Line Fit Regression

data: samples_train=16, samples_valid=0

y=a*x+b

0.8 1

0.6 -

04

0.2 4

0.0 1

Target function

—— BFGS (R2=-27.3627)
COBYLA (R2=-0.9824)

— Nelder-Mead (R2=-3.6006)

= Powell (R2=0.7055)

= trust-constr (R2=-27.2477)

-15

-10 -05 00 05

14/ 36

Linear

Experiment R2: Target - Poly3 Fit

Regression
data: samples_train=16, samples_valid=0
x0=[random, ...], max_iter=200
y=a*x+b
Classical R2: 0.0412 10 1 Target function -
Classical MAPE: 3.573 = (Classical { R2=0.0412) o~
BFGS { R2=-4.4545) -
. -
BFGS R2: -4.4545 —— COBYLA (R2=-1.0734) -
BFGS MAPE: 9.554 08 { — Nelder-Mead (R2=-18532) -
— - __-"""
COBYLA R2: -1.0734 Poweil { R2=-1.2052) -
COBYLA MAPE: 6.3691 — trust-constr { R2=-0.8519) ,—H'/.
—_J.-"
Nelder-Mead R2: -1.8532 0.6 - _— *
Nelder-Mead MAPE: 7.1835 _'_,—-""
> -
Powell R2: -1.2052 e
-
Powell MAPE: 3.9021 04 - e
— -
trust-constr R2: -0.8519 = * . /
trust-constr MAPE: 5.9791 il ,
0.2 g o
Here data is only 16 points * *
This data fitting was surprisingly slow! 0.0 4 .
Different optimisers give vastly different results! :
-0.50 -0.25 0.00 025 050 075 100 125
x

15/ 36

Higher Order

Experiment R3: Target - Poly3 Fit Poly Fit

data: samples_train=16, samples_valid=0
x0=[random, ...], max_iter=200

n
y= > x' + error
i=0
Classical R2: 0.7512 25 Target function
Classical MAPE: ©.5323 = Classical [R2=0.7512) /
BFGS (R2=-17.B796)
BFGS R2: -17.8796 204 —— COBYLA [R2=-17.9376)
BFGS MAPE: 12.0875 —— MNelder-Mead (R2=-17.0284)
— Powell { R2=-17.9855)

COBYLA R2: -17.9376 15 4 — trust-constr { R2=-8.7932)

COBYLA MAPE: B8.857

Nelder-Mead R2: -17.0284

Nelder-Mead MAPE: 11.8813 10 4

-

Powell R2: -17.9855 §

Powell MAPE: 8.4221 05

trust-constr R2: -8.7932 -

trust-constr MAPE: 6.247

00 — P
-05 1)

Here data is only 16 points
This data fitting was surprisingly slow! - T r r - T T r
Different optimisers give vastly different results! =0.50 -0.25 0.00 0.25 0.50 0.75 100 125

EXPeriment R4: Target Trig trend Rebirréiiﬁon
x0=['rES;?1 ?opr:isit';jaxz f_z.t esrirr; zlgs_valid:o

y=a*x+b
Classical R2: 0.6829 Target function
Classical MAPE: 0.3618 125 4 = (Classical [R2=0.6829) /
BFGS (R2=-17.1227) /
BFGS R2: -17.1227 — COBYLA [R2=-37.7122)
BFGS MAPE: 2.8504 100 { — Nelder-Mead { R2=-23.1343) ,/
= Powell (R2=0.6414) / .
COBYLA R2: -37.7122 —— trust-constr (R2=-21.4211) / .
COBYLA MAPE: 4.6102
0.75 1 A .
Nelder-Mead R2: -23.1343 4 P
Nelder-Mead MAPE: 3.5516 - L]
> 050 1 - < ________,..--" .
Powell R2: 0.6414 e . o /
Powell MAPE: 0.3647 " ®
0.25 - == i ®
trust-constr R2: -21.4211 "
trust-constr MAPE: 3.1285 ™
0.00 A
-0.25 A
Here data is 32 points
The fit is terrible, all t f timi h T T T T T T T T
fail?a dI! is terrible, all except for one optimisers have s 5 A" 0 T 7 I M

17 / 36

Experiment R5: Target_Trig_trend igher Order
O lrandom, . ma ore2o0

y= 2 x'+ error

i=0
Classical R2: 0.6479
Classical MAPE: 0.3614 125 4
BFGS R2: -33064.7548
BFGS MAPE: 95.3883
100 - -
COBYLA R2: -1014.4012
COBYLA MAPE: 26.5104 . .
0.75 4 //’——“‘—'J
Nelder-Mead R2: -33304.8988 ! € 9
Nelder-Mead MAPE: 95.76 []
> 050 4 [)
Powell R2: -198371.5901
Powell MAPE: 325.245
0.25 4
trust-constr R2: -33887.8572 Target function
trust-constr MAPE: 95.7221 —— Classical (R2=0.6479)
0.00 - BFGS | R2=-33064.7548)
— COBYLA [R2=-1014.4012)
—— Nelder-Mead | R2=-33304.8988)
=0.25 —— Powell (R2=-198371.5901)
)) = trust-constr { R2=-33887.8572)
Here data is 32 points

2 3 4

The fit is terrible, all optimisers have failed!

18/ 36

Variational quantum linear regression
Reflections

* Variational quantum regression can only be used to fit
linear data (with some noise)

* |ts training convergence is highly sensitive to the
optimisation strategy and the optimiser’s
hyper-parameters

* While the approach taken can be easily adapted to fitting
higher order polynomials, only certain types of functions fit
successfully (mainly those appearing in publications)

* As compared with classical methods of linear/polynomial
fitting, experiments with variational quantum regression
indicate the adopted quantum regression approach is not
promising

* It is worth noting that other, more recent methods such as
QSVT (Quantum Singular Value Decomposition), can assist
fitting any function (or data) with higher-order polynomials

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "The Effect of Data Encoding on the Expressive
Power of Variational Quantum Machine Learning Models." Physical Review A 103, no. 3 (March 24, 2021)

]]
va rl a t I o n a I q u a n t u m Pérez-Salinas, Adrian, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. “Data Re-Uploading for a

Universal Quantum Classifier.” Quantum 4 (Feb 6, 2020): 226.

F O u ri e r t ra n Sfo rm S PennyLane. "Quantum models as Fourier series", 2021.

https://pennylane.ai/gml/demos/tutorial_expressivity_fourier_series.html

We consider a qguantum model

of the following form, which fo = <O|UT (x, 9)]\4(](337 9)|0> The circuit is structured as a series qf

takes 1D data where M is a measurement observable, Wn(@n) Sn(x) layers over a single qubit,
. . . U(x, 6) is a variational quantum circuit that with data repeatedly re'uDloaded

The circuit consists of n layers, encodes data and depends on params 6

, Alternatively, Sn(x) blocks can be
Sn(g;) — 'n?T arranged in parallel, with Wan(6) blocks

before and after, over multiple qubits
fo(z) = Z Wy (05) S () The circuit parameters can then be

each with encoding block Sn(x),
which is a Pauli rotation gate,
and a trainable block Wn(6n)

We can now rewrite fo as as a

/N

Fourier-like sum of “frequency” el trained by the ML optimiser of izlgidee,
ComponentS. W1 S1 W2 S2 W3 S3 w4 S4 W5 S5 W6

Th components are 4. I _ 1 i B I

e oy T e~ — Wl — S — o —
"frequenCieS" and Wb Sn Wa Parallel Model
Whn(6n) coefficients - Lo P U, _m o

Rﬁ-uplczading otthn(x) a . O— = L £ .L

allows to vary the - o o
treauencies’ by - T o T
accumulating = e w l - s - l
rotations Wn(6n) . a . & now e s o

Objective function

Experiment F1: Fit for Sin function

sin(): samples_train=50, samples_valid=20
layers=1, optimizer=L_BFGS_B(maxiter=16)

original function vs fit and predictions

Serial
Model

035

v
]
g
s
g
2025
H
g

o
w
=

o
)
=

015

10

0.8 1

[} 2 4 6
Iteration

Minimum objective function value: (6, 0.1330683974385614)

R2 for training data vs ground truth

R2 for pred vs training data:
MAPE for pred vs training data:

R2 for pred vs validation data:
MAPE for pred vs validation data:

7.663155696226305

(T R b S

Y 06
g
D L
% 04
. 4
[]
w© 02 * . L]
@
e 0 g
00 g’
0.9918349791967765 '
0.9877718132939956 - o ” Range ? ¢ °
0.33358423582057184
Target function Validation data The simplest serial model fits the
—— Fitted model ® Model predictions sine function incredibly well!
0.8008426173608819 e Taing data (noisy)

21/ 36

Experiment F2: Fit for Sin function serial

sin(): samples_train=50, samples_valid=20
layers=5, optimizer=L_BFGS_B(maxiter=16)

Objective function Original function vs fit and predictions

024 10

022
202 08 1

g . |
Eu.lﬂ
.E L]
inlﬁ 5 08
8 g .

014 Js » L]

& 04
012
0 2 4 eration 6 8 10 072 4 . ~.
Minimum objective function value: (4, 0.10879146887817771)
[]

R2 for training data vs ground truth: 0.9918349791987765 0.0 o

R2 for pred vs training data: 0.6099357156304572 -6 -4 2 Ra:ge 2 4 6
MAPE for pred vs training data: 0.6889922735024059

Target function Validation data As the serial model complexity
R2 for pred vs validation data: 0.05423997067201114 —— fFitted model ® Model predictions | increases, its performance
i i]
MAPE for pred vs validation data: 14.09823617905607 ® Fang data (nowy) decreases!

Experiment F5: Fit for Sin function Parallel

sin(): samples_train=50, samples_valid=20
qubits=5, layers=2, interpretation=parity, optimizer=L_BFGS_B(maxiter=15)

Original function vs fit and predictions

Objective function
0.350
0325
0300
% 0275
*g 0.250
E 0225 .
i s
8 0.200 :
£ . .
0175 = 0
.
0.150 ™
0 2 H [3 8 10 . . L)
Iteration . -
Minimum objective function walue: (5, 0.13994586134911505) ¢ L]] ‘
L]
R2 for training data vs ground truth: 0.9918349791907765
R2 for pred vs training data: 0.8874290876885176 -4 -4 -2 m:ge 2 4 6
MAPE for pred vs training data: 0.427966185294369))
The parallel model greatly Target function Validation data Note that a simple experiment
. . improves the performance, —— Fitted model ® Model predictions can show that the serial model
R2 for pred vs validation data: ©.6294743588196634 however, it is not better than the ¢ 5o 'data oisy) directly implements the sine
MAPE for pred vs validation data: 11.225205765589482 simplest serial model! function, so it works so well!
oo o — I s — o -aé
date, —— A & - & J’ o ke & - eL
data; —— QN — J: N pC — zu s J;
datas —— s :L - — — st J;
data: — o e — e . — o e

Experiment F7: Fit for 2-Sins function >

2-sins(): samples_train=50, samples_valid=20
layers=15, optimizer=NELDER_MEAD()

Original function vs fit and predictions

Objective function
028 10 4 -
L]
026
u 08
E 024
g .. L] 4
-
T o2 E] oe o?
8 g .
T L]
2
020 " 04
* L]
018 .
o 200 400 600 800 1000
Iteration 0z
Minimum objective function value: (709, 0.1844968894314135) .
L]
R2 for training data vs ground truth: 0.9827475536429731 0.0
. % 5 3 5 : : ;
R2 for pred vs training data: -0.19097777701942054 Range
MAPE for pred vs training data: 0.48021284794775143 o))
Target function Validation data Any deviation from a simple sine
. . —— Fitted model & Model predictions fi jon, e.g. I
R2 for pred vs validation data: -1.6245309914112311 o Taing ciata (naisy) ' lunetion, £.0. more compiex
MAPE for pred vs validation data: 0.5864867791493156 degrades the fit.

24/ 36

Experiment F8: Fit for 2-Sins function "2

2-sins(): samples_train=50, samples_valid=20
qubits=5, layers=2, optimizer=COBYLA()

Objective function Original function vs fit and predictions

09
L]
0290
08
0285
% 0280 0.7 -
: @
g o215 *e®* 5.,
2 0.6 1 .
ioz?o 5 ! L L
- 0265 ; 05 " ‘ ™
=)
0260 - 0.4 ®
0.255
0 100 200 00 400 500 600 00 03
Iteration
Minimum objective function value: (289, ©.2554413317536141)
02
R2 for training data vs ground truth: 0.9827475536429731
01
R2 for pred vs training data: -9.37705567940830365 -6 4 -2 0 2 4 6
MAPE for pred vs training data: 0.42001786798711565 Range
The parallel model does not help TBrget function Validation data Objective function is volatile.
R2 for pred vs validation data; 0.6573834215063333 | (TN VD comples ncions, — pusmott o edpsacons | paalel model degrades
MAPE for pred vs validation data: 0.5681625641578736 [® Taingdata [noisy) (qubits x layers).

I

!

F)
-

- T

F_ -
or

F_ N
-

ol

o

8

.
oy |
a_

Quantum Fourier transforms
Reflection

Serial quantum Fourier transforms work amazingly well with
a single qubit curve fitting

With increased depth of a serial circuit, the performance
decreases

This is where the parallel quantum Fourier transform steps
in and improves the outcome

However, in both cases the more model parameters, the
worse was the outcome (volatility of the objective function)

Any deviation from a sine function, severely degrades the
fit of both approaches

The hypothesis that the parallel model could improve if we
were to adopt the serial model’s data re-uploading proved
to be incorrect

Worth noting that COBYLA and NELDER MEAD optimisation
excels in its task, L BFGS_B is painfully slow, even though it
provides good results (when finally completes)

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. “The
Q u a n t u m Patte';" Power of Quantum Neural Networks.” Nature Computational Science 1, no. 6 (June 2021): 403-9.
Matching https://doi.org/10.1038/s43588-021-00084-1.
Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020.
n e u ra n etwo r S https://towardsdatascience.com/quantum-neural-networks-for-fintech-dddc6ac68dbf.
- Atypical QNN consists of two main * In contrast to function / data fitting,
components, i.e. a feature map and an QNNs are able to perform pattern
ansatz (also called variational model) matching, i.e. work with a sequence of

values themselves rather than with the

* The feature encodes the input data and mapping between an index and values

prepares the quantum system state, using as

many features as there are qubits - In the following experiments, we will
- The ansatz consists of several layers and, adopt a sliding window approach to
similarly to a classical NN, is responsible for structuring the time series

inter-linking the layers - this is accomplished
by trainable Pauli rotation gates and
entanglement blocks

* However, the standard QNN model does
not lean itself to time series analysis, i.e.

* Finally, the qubit states are measured and -~ You are [imited to the TS window of size
interpreted as QNN output In Qiskit equal to the number of qubits
VQR Model
Feature Map Ansatz
o i— 1 ’ [.L Lol ' Loty
-1 - g— . L e B e e
« - < & ::—c[: EHE ‘-?—éL Rl

datag

datal

dataz

Quantum neural networks
Sliding windows / Serial model

Experiments show that typical QNN (VQR) do
not perform well with time series data

The solution is to extend the Fourier quantum
model into the multi-qubit QNN

This required creation of a custom quantum
circuit, which consists of encoding blocks
Sn(x) and trainable ansatz blocks Wn(6n)

The Fourier parallel model simply replicated
the Sn(x) blocks, which limited the TS window
size to the number of qubits, and which was
tested to perform quite poorly

sliding window

An alternative was to adapt the Fourier serial
model and distribute the TS window data
across the encoding blocks Sn(xk), where each
block would hold as many data points as
there are qubits (k)

Should the last block Sn(xk) be only partially
filled with TS data, then the identity gates are
used to make the complete block

The circuit is then trained by optimising the
parameters of trainable blocks Wn(6n)

time series [][][][][] N
window mapping
trainable blocks W(6) / ansatz into S(x) blocks

w1

S2 W3

o
-

m
oy 1

o

-

-

i3

1
i
i
1

Experiment N1: Forecast for 2 Sins 530"
2 _sins(): samples_train=70, samples_valid=30 MLPRegressor

Data: wind=7, horizon=1
MLPRegressor: hidden_layer_sizes=(150,100,50), random_state=2022, max_iter=850, activation = 'relu’, solver = '‘adam’, shuffle=True

Model performance over time Original function vs fit and predictions

10 - - - = 5
08 10
06
08
04
= 02 206
R e A £
00 S S— M e o e
e = “ 04
02 2
£
04 - Validaton Scare 0z
100 125 150 175 200 225 250 275 3.00
fit_times e
0 20 a 0)
Range
Training SCore: 0.9984613870797965 ! !
Tue Training Data — Taining Data Prediction X
Fake R2 score: -4.642580797341893 TFue Validation Data —— Validation Data Prediction EXC;I;em Zt.’ however Ithe
PP - model prediction is only at
MAPE for training: 0.1325727660135214 R2=30% (possibly the model
is overtrained)
Validation score: 0.30134230110253646
Fake R2 score: -11.184242847692133
MAPE for wvalidation: 1.6791404176874565 29 / 36

Experiment N2: Forecast for 2 Sins Sliding Window

sin(): samples_train=70, samples_valid=30
Data: wind=7, horizon=1 Prep: fmap=ZZFeatureMap(q=7, lays=1), ansatz=EfficientSU2(q=7, lays=2, ent="full", su2_gates=['ry', 'rz'])
VQR: observable='2zZ7Z7777', COBYLA()

Objective function Orniginal function vs fit and predictions
040
035 081
%oso
£ 06
S
8§ 020 = 04
B
015
02 -
010
[} s 100 150 200 50 300
Iteration
Minimum objective function value: (123, 0.108471365148566596) 00 /
R2 for pred vs training data: -1.9726058878033546 41 i , , i
MAPE for pred vs training data: 0.6699898313036804 0 . a0 S 80 80
Fake R2 for mean vs training data: -9.116644938897453
VOQR model worked well only for simple
R2 for pred vs validation data: -2.0658331333082987 e aesl | data sets and SROMEL TS Windows,
MAPE for pred vs validation.data: 0.7104611881078806 With more complex data and longer TS
Fake R2 for mean vs validation data: -15.956157329019735 windows, its performance significantly
degraded
- = él= e
== R y— T = e mm
o (R R R — J; - —- -
LR . -O— L' g L] o L L m . 4 L] l l T T R o o O L o o T o 1l
Em o e e e o —f——c - e &—o——=2 o 2 o——o—o -
LE =m R <> — & g L -—0—<L—-—K>—I-I & e T I-I—.

Experiment N3: Forecast for 2 Sins sliding window
Parallel Model

2_sins(): samples_train=70, samples_valid=30
Data: wind=7, horizon=1
swindow_parallel_model+NNR+CircuitQNN: interpret=parity, qubits=7, ans_layers=3, optimizer=COBYLA()

Objective function Original function vs fit and predictions

034
10 -
033
_E 032 08
s
i
E’ 031
§ _ 06
8 =
0.30 | é
04
029
0 200 400 600 800 1000 02
Iteration
Minimum objective function value: (399, ©.28848159138111823)
00
R2 for pred vs training data: 0.22890923678220454
Fake RZ for mean vs training data: -0.44818249358929796 2 2 0))
MAPE for pred vs training data: 1.7365546202086017 Index n
The sliding window parallel model Parallel models tend to generate very
R2 for pred vs validation data: 0.022659435706280873 gf;s’i{,‘;‘;tgre"y good prediction of Ty == — large creults, which may adversely
Fake R2 for mean vs validation data: -8.33129136935703474) Futh —— Validation)
MAPE for pred vs validation data: 3.4162479029701087 However, its failed predicting the It is also possible that re-uploading of
data amplitude. data may benefit the outcome!
m-l—l—l—i—-—Q—I-l—l © HHE-——¢ T EHEHE EHE-8 =l HEHE EHHE© HHE o T EHEHE
e ‘ & Ehk & aonon & nen-k & i & Bk & -k o LI
. . Bkl © . it e . © e o B-E-u 5 EEE © e
~I—I—IJ|—-—‘LI—II & EEE o Y o R o oa o o - R o RS
e JEHEHE—— - EHEHE © e © EHEHE < B © HEHE © B-iHE © e © EHEHE
v LJ. Rhk i ERLL o 5 okl o il T . CELEL
e ‘ o—-EE8 e o—-EHE-E Sl ¢ -EHE-E o—EHE-E S

Experiment N7: Forecast for 2 Sins sliding window
Serial Model

2_sins(): samples_train=70, samples_valid=30

Data: wind=7, horizon=1

swindow_serial_model + NNR+CircuitQNN: interpret=parity, qubits=3, layers=3, optimizer=COBYLA()

Onginal function vs fit and predictions

Objective function

0.30
038 1
0.29
g 07
3 028
§
5o 06
¢
Z -
8 026 = 05
=
=
025 0.4
024
0.3
0 100 200 300 400 500 600
Iteration
Minimum objective function value: (333, ©.24063370363234937) 02
01
R2 for pred vs training data: 0.4216243799816321 T T T T . . T T T
L. 0 5 50 75 100 125 150 175 200
Fake R2 for mean vs training data: -0.15692687936155725 Index n
MAPE for pred vs training data: 0.2766545159136265
The sliding window serial model Tuth — Taining This model can handle TS windows
R2 for pred vs validation data: 0.594852151990251 demonst(ated good p(ediction of both Juth —— Validation Ionger than the number of qubits
Fake R2 for mean vs validation data: -0.18588781421017253 seasonality and the signal amplitude. available!
MAPE for pred vs validation data: 6.2256624176380736 The model does not re-upload data, The model prediction significantly
however, it overloads TS data points. improved, well above the classical MLP!

datan I—.—.——GT—I—.—. - EaE-c N ._._.__91__." B B a3 ¥
cacn - e JB N . ﬂL =
a2 -JHEHE %MImH—JFm L__pmam B g o EHEHE- Il MH—JFJ"

Quantum neural networks
Reflection

* QNNs are a promising approach to QTS forecasting.

* Unlike other QTS methods, QNNs are capable not only of data
fitting but also pattern matching and prediction.

« However, the standard QNN model consisting of a feature map and
a trainable ansatz, demonstrate poor performance when trained
with more complex data.

* The proposed model for QTS forecasting, extends the single-qubit
quantum Fourier serial model to work in a multi-qubit settings and
more complex data.

The model relies on the TS data continuity to reduce the need for
re-uploading its input data, and instead overloads the qubits with
blocks encoding the entire TS window of data points.

* The proposed model not only is able to encode more data than the
number of its qubits, but the preliminary experiments also
demonstrated the performance exceeding that of the classical MLP.

Other researchers in QNNs Bausch, Johannes. “Recurrent Quantum Neural Networks.” Advances in Neural Information Processing Systems 33 (2020): 1368—79.

proposed quantum models chen, Samuel Yen-Chi, Shinjae Yoo, and Yao-Lung L. Fang. “Quantum Long Short-Term Memory.” In ICASSP 2022-2022 IEEE International
of RNNs and LSTM! Conference on Acoustics, Speech and Signal Processing (ICASSP), 8622—26. IEEE, 2022.

original function vs fit and predictions

l Working with world data

- Our QTSA research features real-world T L .
applications. For example, our work g l’ },L /»“'\w N A " 1. '
. . \ pyanu vy \) A oo | | “/ \ | N .
involved records of beer sales in USA. \J __,\Ip‘-»j:.\ v ﬂ/m O D
R L Y | .
.) . ol 80 \/ ' :
* The preliminary experiments indicate that !

more work is required to make the
proposed model practical.

Target function Validation data
Fitted model ® Model predictions
® Taing data (noisy)

* The future work will include:

- Adoption of different circuit measurement

Original function vs fit and predictions

strategies and interpretation of results.

- Inclusion of non-linearities to mimic NN
activation functions.

fiX[n])

- Dealing with larger TS horizons and non- s

Exploration of avenues for QTSA to °

stationary TS
- Most importantly: WWMWWMM)“\f\ﬂ\,lm

demonstrate real quantum advantage, e.g.

in TS anomaly detection, adoption of
stochastic TS analysis, etc.

Tuth — Faining
TFuth —— Validation

Bird-view of Quantum Time Series Analysis
Summary, reflections and questions

_ Variational quantum QNNs with data
TS processing regression is too re-uploading and Quantum systems
requires data storage simplistic overloading are key have no memory

Variational quantum Quantum neural nets

Quantum Fourier models effectively QC creates suggest the solution
transforms are simulate memory Opportun|t|es for TSA to QTSA

promising

TS window
limited to the
number of qubits

feature map

Single trainable

ansatz at the circuit —-

end only

trainable ansatz

;i:

)

o1

ROU!

= = = </<” /l

o0

time series with a
x Sliding window

Quantum

Neural Network

lidi .
stiding window -] oOD000
g9 .
encoding
trainable ansatz trainable ansatz blocks trainable ansatz
w1 S1 W2 S2 w3
aazo -{HEHE——© ; . B 3 INEE BmME B W mimm ; . B B ImEE EEER B B mimm
datar R l - l B om i - HLT
aataz B _ 2§ aumE gmum B W | _ p m e . mom
‘ Trainable A A Trainable ansatze A

- state preparation

QTSA

separate encoding ;

Data overloading /

Unlimited size
of TS window

blocks

encoding multivariate TS

Potential for

Sliding Window
Serial Model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

