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Classical TS Methods
Key concepts in classical time series analysis
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Analysis of the past
Prediction of the future

● We are bombarded daily with volumes of time-based 
information, often in the form of data points in time, in 
other words - a time series

● Time series visualisations are used to inform experts, 
influence government policies and shape public 
opinion (e.g. about COVID)

● Time series analysis aims to identify patterns in 
collected historical data and to create forecasts of 
what data is likely to be collected in the future

● Sample applications include heart monitoring, weather 
forecasts, fault detection in rotating machinery, etc.

● Times series analysis and forecasting is an established 
and trusted discipline, with excellent tools and highly 
efficient methods

● Organisations that rely on time-based information are 
in the pursuit of more efficient or more effective time 
series analysis

● Quantum time series is a possible approach to time 
series analysis and forecasting

As it was then...

As it is now...
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Key concepts in 
time series analysis

● As with any data set, time series needs some 
pre-processing for its effective use

● Time series must have an index 
- a time-stamp sequencing the series

● It is often assumed that index is a key, 
i.e. index values are unique

● Time series needs to be ordered by its index

● Time series will also have some 
time-dependent attributes to be modelled

● Time series can be univariate or multivariate, 
depending on whether a single or multiple 
attributes are being investigated

● Missing indeces and their dependent attributes 
may need to be imputed (e.g. interpolated)

● A series can be defined over non-time entities, 
e.g. a landscape line or a DNA sequence

● Index needs to be of appropriate granularity, 
e.g. years, months, weeks, days, hours, etc.

● Attributes need to be aggregated to the 
required index granularity

● Time signal often shows seasonality in data, 
i.e. a regular repeating pattern

● With aggregation and smoothing seasonality 
can be removed and trends visually identified

● Majority of forecasting methods require
time-series to be stationary, i.e. its mean, 
variance and auto-correlation are constant

● Time series analysis needs data storage

Sales of beer in USA
Mean not constant

Variance not constant

Non-linear trend
Visibly not stationary
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Neural Nets for 
Time Series Analysis

● The simplest neural networks, such as Multi-
Layer Perceptrons (MLPs), map numeric inputs 
into numeric or categorical outputs via layers of 
“neurons”, interconnected by weighed links, and 
calculating weighted sums with non-linearity

● The weights of neural links are trained within an 
optimisation process, such as gradient descent, 
by matching the calculated vs expected outputs

● Some types of deep neural networks can be 
trained for time series analysis, including: 
forecasting, classification and clustering, e.g.

– Recurrent Neural Networks (RNN)

– Long Short-Term Memory (LSTM) nets

– Gated Recurrent Units (GRU) nets

● Unlike MLPs, networks such as RNN, LSTM and 
GRU are able to retain and rely on memory of 
the past training data

● Neural networks and RNNs are similar in their 
structure to quantum solutions (circuits)

Input encoding

Data processing

Neural Net

t=0 t=1 t=2 t=... t=18 t=19

t=18 t=19 t=20

Dense Layer

Warmup

Label

Embedding LayerInput

Encoded Inputs

Output encoding

Outputs

RNN

Time
Relations
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Fundamental Quantum Concepts
Approach, qubits and circuits, process and principles
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Quantum Computing
Approach and applications

● Quantum computing allows information 
processing to be accomplished by utilising 
the behaviour of matter and light on the 
atomic and subatomic scale

● Quantum computing aims at solving 
problems in many disciplines, e.g.

– natural science, such as calculation of 
molecular energy or protein folding;

– finance, such as portfolio optimisation, 
pricing of financial options or credit 
risk assessment;

– optimisation, such as in vehicle 
routing or energy distribution using 
several quantum-enhanced 
optimisation techniques;

– machine learning, featuring many 
general purpose algorithms, such as 
neural networks or kernel methods.

● Quantum applications can demonstrate their 
advantage over classical solutions by relying on 
the following features of quantum systems:

– True randomness of observable results 
(measurement of quantum states)

– Pursuing alternative decisions concurrently 
(superposition of quantum states)

– Controlling parallel choices with constraints 
(entanglement of quantum elements)

● An example where all three principles are 
applied – financial option price prediction

All possible price evolution paths
can be considered in parallel

Generated price fluctuations
are truly random

Price evolution can 
be constrained to 
the financial model 
governing the 
market price 
behaviour

In the end, the price 
estimate can be 
based on the 
expectation value, 
the payoff function, 
etc.
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Quantum Machine Learning
Process of quantum problem-solving

Quantum circuits are static - new data requires new 
circuit. However, it is possible to create “variational” 
circuits, which are templates with parametrised 
gates, e.g. P, Ry and Rz varying degrees of rotation, 
which can be optimised using some ML algorithm. 

To find optimum circuit parameters, the circuit is 
repeatedly executed and its outputs measured. 
Outputs are then compared against the expected 
values using a cost function, so the optimiser could 
determine new values for the process parameters.

Input
Preparation

Output
Measurement

Processing
 with parameterised gates

Quantum registers
initialised to |0>

Classical registers
with outputs measured as 0 or 1 

Cost
Fun

Optimisation Algorithm

cost is minimised
during circuit training

Input Parameters

Process Parameters

Training
Data Set

optimisation loop

measured values are 
interpreted to match 

training data

Feature Map

Ansatz

Qubit is the most important quantum tech concept. 
It is a unit of quantum information. It is also a device able 
to manipulate a single unit of such information.

Quantum circuit is the model of quantum computation. 
It identifies qubits, their initialisation to some input states, a 
sequence of quantum gates performing operations on qubits 
(such as rotation or entanglement), and measurements 
allowing observation of qubit states, on circuit execution.

Random

qubits can be 
entangled

qubits are in 
superposition
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How qubits work
In a simplified way!

Qubit is often “implemented” as a single 
elementary particle, e.g. electron or photon

Qubit represents a state of such a particle, e.g. 
an electron spin (up or down) or photon’s linear 
polarisation (horizontal or vertical)

Qubits are in a state of superposition of some 
basis states, so the electron spin is not just 
up or down but a combination of these basis 
states, e.g. 

When we measure the qubit, its state collapses 
probabilistically into one of the basis states 
up or down, measured as simple values, e.g.

● 0 / 1 for up or down for electrons, and
● 0 / 1 for horizontal or vertical for photons.

Mathematically a qubit state can be represented as 
a vector (a point) in space of all possible states. 

(0, 0) Basis state
(1, 0) ≡ |0>

Basis state
(0, 1) ≡ |1>

a

b

The qubit state space has its own coordinate system, 
defined by the basis vectors, which are orthogonal unit 
vectors (of length=1), for example in 2D these could be 
vectors (1, 0) and (0, 1), denoted as |0> and |1>.

(a, b) = a (1, 0) + b (0, 1) 

As we can see, any vector (a, b) is a (linear) 
combination of the basis vectors (1, 0) and (0, 1) 
– we call this superposition. 

x

|0> and |1> are vectors, 
not values 0 and 1, which 
is what we observe on 
qubit measurement

Qubit measurement 
returns 0 or 1, but 
repeated measurements 
provide expectation 
values of observing 0 or 1

length=1

All valid states are on 
the circle of radius = 1 

y

a2 + b2 = 1

In reality, this is more complex as 
qubit states are described by two 
complex numbers, each with real and 
imaginary parts, making it 4 reals. 

With a clever “projection” trick we can 
depict the qubit state in 3D (not 4D), 
e.g. as a Bloch sphere.

measurement

Pauli
rotations
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Experiments
Data Encoding and Data Analysis
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Ways of utilising time series data 
in quantum system computation 

● Quantum systems have no memory!
● Quantum circuits take no data!

● The only way of obtaining and retaining 
information in a quantum system is via:

– structure of a quantum circuit
(as done in variational methods)

– states of quantum computation
(as done in adiabatic optimisation)

● In this presentation we will focus on the first 
option – the variational methods

● In variational time series analysis, the key 
concerns are:

– data encoding strategy
– circuit optimisation strategy

There are many different quantum data 
encoding / state preparation methods:

● basis encoding, with qubits acting as 
bits in the encoded number (int) to be 
processed further in the circuit

● angle encoding, where qubit rotation 
(real) represents the value of data

● amplitude encoding, where each data 
point is encoded as expectation value 
of the measured circuit (real), usually 
no further data processing is present

● Others: QuAM, QRAM, Qsample, ... 

We will explain these approaches by 
demonstration of:

● Quantum regression (function fitting)
● Quantum Fourier transform (function fitting)
● Quantum neural networks (pattern detect.)

C
a

n
 b

e
 fu

rth
er 

in
te

rp
re

ted

Schuld, Maria, and Francesco Petruccione. Machine Learning with Quantum Computers. 2nd ed. 
2021 edition. Springer, 2021. https://link.springer.com/book/10.1007/978-3-030-83098-4.
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Variational quantum 
linear regression

We are trying to find a and b to 
satisfy a linear equation

We will encode a normalised 
vector y as a quantum state        

We will identify a and b in the 
optimisation process, which 
considers a sequence of states:

The optimisation will search for 
such a and b, and thus
to minimise the cost function 
which tries to maximise the 
similarity of       and

What’s remaining is to create a 
quantum circuit able to calculate
         based on pairs a and b, so 
that the cost function could drive 
the optimisation process

The required circuit will be built into 
the cost function. It will rely on the 
amplitude encoding of sample data, 
which ensures that measured 
expectation values of the composite 
qubit states corresponds to data values

We encode normalised ax+b in qubits 
q0 and q1, and normalised y in qubits 
q2 and q3. These encoded values act as 
constraints on the calculation. The 
Hadamard gate H allows measuring the 
expectation value, which implies the 
value of the inner product of interest
(for explanation, see ref: Qiskit 2020)

Bravo-Prieto, Carlos, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles. 
“Variational Quantum Linear Solver.” ArXiv Preprint ArXiv:1909.05820, 2019.

Qiskit. “Variational Quantum Regression”, in Learn Quantum Computation Using Qiskit. Textbook, 2020.
https://qiskit.org/textbook/ch-demos/variational-quantum-regression.html

Can be adapted for 
fitting higher order 

polynomials

Function
Fitting
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Experiment R1: Target - Line Fit
data: samples_train=16, samples_valid=0 
x0=[0.5, 0.5], max_iter=200

Linear
Regression

Here data is only 16 points
This data fitting was surprisingly slow!
Different optimisers give vastly different results, 
regardless of their hyper-parameters!
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Experiment R2: Target - Poly3 Fit
data: samples_train=16, samples_valid=0 
x0=[random, ...], max_iter=200

Linear
Regression

Here data is only 16 points
This data fitting was surprisingly slow!
Different optimisers give vastly different results!
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Experiment R3: Target - Poly3 Fit
data: samples_train=16, samples_valid=0 
x0=[random, ...], max_iter=200

Higher Order 
Poly Fit

Here data is only 16 points
This data fitting was surprisingly slow!
Different optimisers give vastly different results!
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Experiment R4: Target_Trig_trend
data: samples_train=32, samples_valid=0 
x0=[random, …], max_iter=200

Linear
Regression

Here data is 32 points
The fit is terrible, all except for one optimisers have 
failed!
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Experiment R5: Target_Trig_trend
data: samples_train=32, samples_valid=0 
x0=[random, ...], max_iter=200

Higher Order 
Poly Fit

Here data is 32 points
The fit is terrible, all optimisers have failed!
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Variational quantum linear regression
Reflections

● Variational quantum regression can only be used to fit 
linear data (with some noise)

● Its training convergence is highly sensitive to the 
optimisation strategy and the optimiser’s 
hyper-parameters

● While the approach taken can  be easily adapted to fitting 
higher order polynomials, only certain types of functions fit 
successfully (mainly those appearing in publications)

● As compared with classical methods of linear/polynomial 
fitting, experiments with variational quantum regression 
indicate the adopted quantum regression approach is not 
promising

● It is worth noting that other, more recent methods such as 
QSVT (Quantum Singular Value Decomposition), can assist 
fitting any function (or data) with higher-order polynomials
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Variational quantum 
Fourier transforms

We consider a quantum model 
of the following form, which 
takes 1D data

The circuit consists of n layers, 
each with encoding block Sn(x), 
which is a Pauli rotation gate, 
and a trainable block Wn(θn)

We can now rewrite fθ as as a 
Fourier-like sum of “frequency” 
components.

The circuit is structured as a series of 
Wn(θn) Sn(x) layers over a single qubit, 
with data repeatedly re-uploaded 

Alternatively, Sn(x) blocks can be 
arranged in parallel, with Wa/b(θ) blocks 
before and after, over multiple qubits

The circuit parameters can then be 
trained by the ML optimiser of choice

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "The Effect of Data Encoding on the Expressive 
Power of Variational Quantum Machine Learning Models." Physical Review A 103, no. 3 (March 24, 2021)

Pérez-Salinas, Adrián, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. “Data Re-Uploading for a 
Universal Quantum Classifier.” Quantum 4 (Feb 6, 2020): 226.

PennyLane. "Quantum models as Fourier series", 2021. 
https://pennylane.ai/qml/demos/tutorial_expressivity_fourier_series.html

where M is a measurement observable, 
U(x, θ) is a variational quantum circuit that

encodes data and depends on params θ

W1 S1 W2 S2 W3 S3 W4 S4 W5 S5 W6

Wb WaSn

Th components are 
determined by Sn(x) 
“frequencies” and 
Wn(θn) coefficients

Re-uploading of Sn(x) 
allows to vary the 
“frequencies” by 
accumulating 
rotations Wn(θn) .

Serial Model

Parallel Model
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Experiment F1: Fit for Sin function
sin(): samples_train=50, samples_valid=20
layers=1, optimizer=L_BFGS_B(maxiter=16)

Serial
Model

The simplest serial model fits the 
sine function incredibly well!
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Experiment F2: Fit for Sin function
sin(): samples_train=50, samples_valid=20
layers=5, optimizer=L_BFGS_B(maxiter=16)

Serial
Model

As the serial model complexity 
increases, its performance 
decreases!
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Experiment F5: Fit for Sin function
sin(): samples_train=50, samples_valid=20
qubits=5, layers=2, interpretation=parity, optimizer=L_BFGS_B(maxiter=15)

Parallel
Model

Note that a simple experiment 
can show that the serial model 
directly implements the sine 
function, so it works so well!

The parallel model greatly 
improves the performance, 
however, it is not better than the 
simplest serial model!
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Experiment F7: Fit for 2-Sins function
2-sins(): samples_train=50, samples_valid=20
layers=15, optimizer=NELDER_MEAD()

Serial
Model

Any deviation from a simple sine 
function, e.g. more complex 
curve or inclusion of a trend, 
degrades the fit.
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Experiment F8: Fit for 2-Sins function
2-sins(): samples_train=50, samples_valid=20
qubits=5, layers=2, optimizer=COBYLA()

Parallel
Model

Objective function is volatile.
The parallel model degrades 
with the number of parameters 
(qubits x layers).

The parallel model does not help 
(much) with complex functions.
Perhaps data re-uploading could 
be beneficial here?



  26 / 36

Quantum Fourier transforms
Reflection

● Serial quantum Fourier transforms work amazingly well with 
a single qubit curve fitting

● With increased depth of a serial circuit, the performance 
decreases

● This is where the parallel quantum Fourier transform steps 
in and improves the outcome

● However, in both cases the more model parameters, the 
worse was the outcome (volatility of the objective function)

● Any deviation from a sine function, severely degrades the 
fit of both approaches

● The hypothesis that the parallel model could improve if we 
were to adopt the serial model’s data re-uploading proved 
to be incorrect

● Worth noting that COBYLA and NELDER_MEAD optimisation 
excels in its task, L_BFGS_B is painfully slow, even though it 
provides good results (when finally completes)
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Quantum 
neural networks

● A typical QNN consists of two main 
components, i.e. a feature map and an 
ansatz (also called variational model)

● The feature encodes the input data and 
prepares the quantum system state, using as 
many features as there are qubits

● The ansatz consists of several layers and, 
similarly to a classical NN, is responsible for 
inter-linking the layers - this is accomplished 
by trainable Pauli rotation gates and 
entanglement blocks

● Finally, the qubit states are measured and 
interpreted as QNN output

● In contrast to function / data fitting, 
QNNs are able to perform pattern 
matching, i.e. work with a sequence of 
values themselves rather than with the 
mapping between an index and values

● In the following experiments, we will 
adopt a sliding window approach to 
structuring the time series

● However, the standard QNN model does 
not lean itself to time series analysis, i.e.

– You are limited to the TS window of size 
equal to the number of qubits

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. “The 
Power of Quantum Neural Networks.” Nature Computational Science 1, no. 6 (June 2021): 403–9. 

https://doi.org/10.1038/s43588-021-00084-1.

Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020. 
https://towardsdatascience.com/quantum-neural-networks-for-fintech-dddc6ac68dbf.

Feature Map Ansatz

Pattern
Matching

In Qiskit
VQR Model
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Quantum neural networks
Sliding windows / Serial model

● Experiments show that typical QNN (VQR) do 
not perform well with time series data

● The solution is to extend the Fourier quantum 
model into the multi-qubit QNN

● This required creation of a custom quantum 
circuit, which consists of encoding blocks 
Sn(x) and trainable ansatz blocks Wn(θn)

● The Fourier parallel model simply replicated 
the Sn(x) blocks, which limited the TS window 
size to the number of qubits, and which was 
tested to perform quite poorly

● An alternative was to adapt the Fourier serial 
model and distribute the TS window data 
across the encoding blocks Sn(xk), where each 
block would hold as many data points as 
there are qubits (k)

● Should the last block Sn(xk) be only partially 
filled with TS data, then the identity gates are 
used to make the complete block

● The circuit is then trained by optimising the 
parameters of trainable blocks Wn(θn) 

S1W1 S2W2 W3

time series
sliding window

window mapping
into S(x) blockstrainable blocks W(θ) / ansatz
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Experiment N1: Forecast for 2 Sins
2_sins(): samples_train=70, samples_valid=30 
Data: wind=7, horizon=1
MLPRegressor: hidden_layer_sizes=(150,100,50), random_state=2022, max_iter=850, activation = 'relu', solver = 'adam', shuffle=True

Sliding Window
sklearn

MLPRegressor

Excellent fit, however the 
model prediction is only at 
R2=30% (possibly the model 
is overtrained)
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Experiment N2: Forecast for 2 Sins
sin(): samples_train=70, samples_valid=30
Data: wind=7, horizon=1    Prep: fmap=ZZFeatureMap(q=7, lays=1), ansatz=EfficientSU2(q=7, lays=2, ent="full", su2_gates=['ry', 'rz'])
VQR: observable=’ZZZZZZZ’, COBYLA()

Sliding Window
VQR

VQR model worked well only for simple 
data sets and shorter TS windows,

With more complex data and longer TS 
windows, its performance significantly 
degraded
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Experiment N3: Forecast for 2 Sins
2_sins(): samples_train=70, samples_valid=30 
Data: wind=7, horizon=1
swindow_parallel_model+NNR+CircuitQNN: interpret=parity, qubits=7, ans_layers=3, optimizer=COBYLA()

Parallel models tend to generate very 
large circuits, which may adversely 
affect the results.

It is also possible that re-uploading of 
data may benefit the outcome!

Sliding Window
Parallel Model

The sliding window parallel model 
displayed pretty good prediction of 
seasonality.

However, its failed predicting the 
data amplitude.
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Experiment N7: Forecast for 2 Sins
2_sins(): samples_train=70, samples_valid=30 
Data: wind=7, horizon=1
swindow_serial_model + NNR+CircuitQNN: interpret=parity, qubits=3, layers=3, optimizer=COBYLA()

Sliding Window
Serial Model

This model can handle TS windows 
longer than the number of qubits 
available!

The model  prediction significantly 
improved, well above the classical MLP!

The sliding window serial model 
demonstrated good prediction of both 
seasonality and the signal amplitude.

The model does not re-upload data, 
however, it overloads TS data points.
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Quantum neural networks
Reflection

● QNNs are a promising approach to QTS forecasting.
● Unlike other QTS methods, QNNs are capable not only of data 

fitting but also pattern matching and prediction.
● However, the standard QNN model consisting of a feature map and 

a trainable ansatz, demonstrate poor performance when trained 
with more complex data.

● The proposed model for QTS forecasting, extends the single-qubit 
quantum Fourier serial model to work in a multi-qubit settings and 
more complex data.

● The model relies on the TS data continuity to reduce the need for 
re-uploading its input data, and instead overloads the qubits with 
blocks encoding the entire TS window of data points.

● The proposed model not only is able to encode more data than the 
number of its qubits, but the preliminary experiments also 
demonstrated the performance exceeding that of the classical MLP.

Bausch, Johannes. “Recurrent Quantum Neural Networks.” Advances in Neural Information Processing Systems 33 (2020): 1368–79.

Chen, Samuel Yen-Chi, Shinjae Yoo, and Yao-Lung L. Fang. “Quantum Long Short-Term Memory.” In ICASSP 2022-2022 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), 8622–26. IEEE, 2022.

Other researchers in QNNs 
proposed quantum models 
of RNNs and LSTM!
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Working with world data

● Our QTSA research features real-world 
applications. For example, our work 
involved records of beer sales in USA.

● The preliminary experiments indicate that 
more work is required to make the 
proposed model practical.

● The future work will include:

– Adoption of different circuit measurement 
strategies and interpretation of results.

– Inclusion of non-linearities to mimic NN 
activation functions.

– Dealing with larger TS horizons and non-
stationary TS

– Most importantly:
Exploration of avenues for QTSA to 
demonstrate real quantum advantage, e.g. 
in TS anomaly detection, adoption of 
stochastic TS analysis, etc.
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Bird-view of Quantum Time Series Analysis
Summary, reflections and questions

Quantum neural nets 
suggest the solution

to QTSA

Quantum Fourier 
transforms are 

promising

QC creates 
opportunities for TSA

TS processing 
requires data storage

Variational quantum 
regression is too

simplistic
Quantum systems
have no memory

QNNs with data
re-uploading and 

overloading are key

Variational quantum 
models effectively 
simulate memory
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S1W1 S2W2 W3

time series with a 
sliding window

encoding
blockstrainable ansatz

feature map

Sliding Window 
Serial Model

Quantum
Neural Network

QTSA
Data overloading / 

Unlimited size
of TS window

TS window 
limited to the 

number of qubits

Trainable ansatze 
separate encoding 

blocks 

Trainable 
state preparation

Potential for 
encoding multivariate TS

x

Single trainable 
ansatz at the circuit 

end only
trainable ansatz

sliding window
encoding

trainable ansatztrainable ansatz
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