
 1 / 36

Key Concepts in Quantum Time Series Analysis (QTSA)
An Introduction and Preliminary Research Results

Jacob L. Cybulski
School of IT, SEBE, Deakin University

Introduction
Key concepts in classical time series
Quantum computing brief
Quantum time series analysis and forecasting
QTSA data encoding and analysis
QTSA with variational quantum linear regression
QTSA with variational quantum Fourier transforms
QTSA with quantum neural networks
QTSA with real data
Summary and reflection

IBM quantum computer
Quantum computing is modern magic
Quantum machine learning turns data into magic

29 September 2022 Creative Commons CC-BY

 2 / 36

Research
• Quantum computing
• Quantum machine learning
• Quantum time series analysis

and anomaly detection
• Classical machine learning
• Data visualisation

Personal
• Recreational cycling
• Reading science and Sci-Fi
• Quantum challenges and

hackathons

Presenter
Jacob Cybulski
jacob.cybulski@deakin.edu.au

Honorary A/Prof
In Quantum Computing

School of IT, SEBE
Deakin University

Melbourne, Australia

 3 / 36

Classical TS Methods
Key concepts in classical time series analysis

 4 / 36

Analysis of the past
Prediction of the future

● We are bombarded daily with volumes of time-based
information, often in the form of data points in time, in
other words - a time series

● Time series visualisations are used to inform experts,
influence government policies and shape public
opinion (e.g. about COVID)

● Time series analysis aims to identify patterns in
collected historical data and to create forecasts of
what data is likely to be collected in the future

● Sample applications include heart monitoring, weather
forecasts, fault detection in rotating machinery, etc.

● Times series analysis and forecasting is an established
and trusted discipline, with excellent tools and highly
efficient methods

● Organisations that rely on time-based information are
in the pursuit of more efficient or more effective time
series analysis

● Quantum time series is a possible approach to time
series analysis and forecasting

As it was then...

As it is now...

 5 / 36

Key concepts in
time series analysis

● As with any data set, time series needs some
pre-processing for its effective use

● Time series must have an index
- a time-stamp sequencing the series

● It is often assumed that index is a key,
i.e. index values are unique

● Time series needs to be ordered by its index

● Time series will also have some
time-dependent attributes to be modelled

● Time series can be univariate or multivariate,
depending on whether a single or multiple
attributes are being investigated

● Missing indeces and their dependent attributes
may need to be imputed (e.g. interpolated)

● A series can be defined over non-time entities,
e.g. a landscape line or a DNA sequence

● Index needs to be of appropriate granularity,
e.g. years, months, weeks, days, hours, etc.

● Attributes need to be aggregated to the
required index granularity

● Time signal often shows seasonality in data,
i.e. a regular repeating pattern

● With aggregation and smoothing seasonality
can be removed and trends visually identified

● Majority of forecasting methods require
time-series to be stationary, i.e. its mean,
variance and auto-correlation are constant

● Time series analysis needs data storage

Sales of beer in USA
Mean not constant

Variance not constant

Non-linear trend
Visibly not stationary

 6 / 36

Neural Nets for
Time Series Analysis

● The simplest neural networks, such as Multi-
Layer Perceptrons (MLPs), map numeric inputs
into numeric or categorical outputs via layers of
“neurons”, interconnected by weighed links, and
calculating weighted sums with non-linearity

● The weights of neural links are trained within an
optimisation process, such as gradient descent,
by matching the calculated vs expected outputs

● Some types of deep neural networks can be
trained for time series analysis, including:
forecasting, classification and clustering, e.g.

– Recurrent Neural Networks (RNN)

– Long Short-Term Memory (LSTM) nets

– Gated Recurrent Units (GRU) nets

● Unlike MLPs, networks such as RNN, LSTM and
GRU are able to retain and rely on memory of
the past training data

● Neural networks and RNNs are similar in their
structure to quantum solutions (circuits)

Input encoding

Data processing

Neural Net

t=0 t=1 t=2 t=... t=18 t=19

t=18 t=19 t=20

Dense Layer

Warmup

Label

Embedding LayerInput

Encoded Inputs

Output encoding

Outputs

RNN

Time
Relations

 7 / 36

Fundamental Quantum Concepts
Approach, qubits and circuits, process and principles

 8 / 36

Quantum Computing
Approach and applications

● Quantum computing allows information
processing to be accomplished by utilising
the behaviour of matter and light on the
atomic and subatomic scale

● Quantum computing aims at solving
problems in many disciplines, e.g.

– natural science, such as calculation of
molecular energy or protein folding;

– finance, such as portfolio optimisation,
pricing of financial options or credit
risk assessment;

– optimisation, such as in vehicle
routing or energy distribution using
several quantum-enhanced
optimisation techniques;

– machine learning, featuring many
general purpose algorithms, such as
neural networks or kernel methods.

● Quantum applications can demonstrate their
advantage over classical solutions by relying on
the following features of quantum systems:

– True randomness of observable results
(measurement of quantum states)

– Pursuing alternative decisions concurrently
(superposition of quantum states)

– Controlling parallel choices with constraints
(entanglement of quantum elements)

● An example where all three principles are
applied – financial option price prediction

All possible price evolution paths
can be considered in parallel

Generated price fluctuations
are truly random

Price evolution can
be constrained to
the financial model
governing the
market price
behaviour

In the end, the price
estimate can be
based on the
expectation value,
the payoff function,
etc.

 9 / 36

Quantum Machine Learning
Process of quantum problem-solving

Quantum circuits are static - new data requires new
circuit. However, it is possible to create “variational”
circuits, which are templates with parametrised
gates, e.g. P, Ry and Rz varying degrees of rotation,
which can be optimised using some ML algorithm.

To find optimum circuit parameters, the circuit is
repeatedly executed and its outputs measured.
Outputs are then compared against the expected
values using a cost function, so the optimiser could
determine new values for the process parameters.

Input
Preparation

Output
Measurement

Processing
 with parameterised gates

Quantum registers
initialised to |0>

Classical registers
with outputs measured as 0 or 1

Cost
Fun

Optimisation Algorithm

cost is minimised
during circuit training

Input Parameters

Process Parameters

Training
Data Set

optimisation loop

measured values are
interpreted to match

training data

Feature Map

Ansatz

Qubit is the most important quantum tech concept.
It is a unit of quantum information. It is also a device able
to manipulate a single unit of such information.

Quantum circuit is the model of quantum computation.
It identifies qubits, their initialisation to some input states, a
sequence of quantum gates performing operations on qubits
(such as rotation or entanglement), and measurements
allowing observation of qubit states, on circuit execution.

Random

qubits can be
entangled

qubits are in
superposition

 10 / 36

How qubits work
In a simplified way!

Qubit is often “implemented” as a single
elementary particle, e.g. electron or photon

Qubit represents a state of such a particle, e.g.
an electron spin (up or down) or photon’s linear
polarisation (horizontal or vertical)

Qubits are in a state of superposition of some
basis states, so the electron spin is not just
up or down but a combination of these basis
states, e.g.

When we measure the qubit, its state collapses
probabilistically into one of the basis states
up or down, measured as simple values, e.g.

● 0 / 1 for up or down for electrons, and
● 0 / 1 for horizontal or vertical for photons.

Mathematically a qubit state can be represented as
a vector (a point) in space of all possible states.

(0, 0) Basis state
(1, 0) ≡ |0>

Basis state
(0, 1) ≡ |1>

a

b

The qubit state space has its own coordinate system,
defined by the basis vectors, which are orthogonal unit
vectors (of length=1), for example in 2D these could be
vectors (1, 0) and (0, 1), denoted as |0> and |1>.

(a, b) = a (1, 0) + b (0, 1)

As we can see, any vector (a, b) is a (linear)
combination of the basis vectors (1, 0) and (0, 1)
– we call this superposition.

x

|0> and |1> are vectors,
not values 0 and 1, which
is what we observe on
qubit measurement

Qubit measurement
returns 0 or 1, but
repeated measurements
provide expectation
values of observing 0 or 1

length=1

All valid states are on
the circle of radius = 1

y

a2 + b2 = 1

In reality, this is more complex as
qubit states are described by two
complex numbers, each with real and
imaginary parts, making it 4 reals.

With a clever “projection” trick we can
depict the qubit state in 3D (not 4D),
e.g. as a Bloch sphere.

measurement

Pauli
rotations

 11 / 36

Experiments
Data Encoding and Data Analysis

 12 / 36

Ways of utilising time series data
in quantum system computation

● Quantum systems have no memory!
● Quantum circuits take no data!

● The only way of obtaining and retaining
information in a quantum system is via:

– structure of a quantum circuit
(as done in variational methods)

– states of quantum computation
(as done in adiabatic optimisation)

● In this presentation we will focus on the first
option – the variational methods

● In variational time series analysis, the key
concerns are:

– data encoding strategy
– circuit optimisation strategy

There are many different quantum data
encoding / state preparation methods:

● basis encoding, with qubits acting as
bits in the encoded number (int) to be
processed further in the circuit

● angle encoding, where qubit rotation
(real) represents the value of data

● amplitude encoding, where each data
point is encoded as expectation value
of the measured circuit (real), usually
no further data processing is present

● Others: QuAM, QRAM, Qsample, ...

We will explain these approaches by
demonstration of:

● Quantum regression (function fitting)
● Quantum Fourier transform (function fitting)
● Quantum neural networks (pattern detect.)

C
a

n
 b

e
 fu

rth
er

in
te

rp
re

ted

Schuld, Maria, and Francesco Petruccione. Machine Learning with Quantum Computers. 2nd ed.
2021 edition. Springer, 2021. https://link.springer.com/book/10.1007/978-3-030-83098-4.

 13 / 36

Variational quantum
linear regression

We are trying to find a and b to
satisfy a linear equation

We will encode a normalised
vector y as a quantum state

We will identify a and b in the
optimisation process, which
considers a sequence of states:

The optimisation will search for
such a and b, and thus
to minimise the cost function
which tries to maximise the
similarity of and

What’s remaining is to create a
quantum circuit able to calculate
 based on pairs a and b, so
that the cost function could drive
the optimisation process

The required circuit will be built into
the cost function. It will rely on the
amplitude encoding of sample data,
which ensures that measured
expectation values of the composite
qubit states corresponds to data values

We encode normalised ax+b in qubits
q0 and q1, and normalised y in qubits
q2 and q3. These encoded values act as
constraints on the calculation. The
Hadamard gate H allows measuring the
expectation value, which implies the
value of the inner product of interest
(for explanation, see ref: Qiskit 2020)

Bravo-Prieto, Carlos, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles.
“Variational Quantum Linear Solver.” ArXiv Preprint ArXiv:1909.05820, 2019.

Qiskit. “Variational Quantum Regression”, in Learn Quantum Computation Using Qiskit. Textbook, 2020.
https://qiskit.org/textbook/ch-demos/variational-quantum-regression.html

Can be adapted for
fitting higher order

polynomials

Function
Fitting

 14 / 36

Experiment R1: Target - Line Fit
data: samples_train=16, samples_valid=0
x0=[0.5, 0.5], max_iter=200

Linear
Regression

Here data is only 16 points
This data fitting was surprisingly slow!
Different optimisers give vastly different results,
regardless of their hyper-parameters!

 15 / 36

Experiment R2: Target - Poly3 Fit
data: samples_train=16, samples_valid=0
x0=[random, ...], max_iter=200

Linear
Regression

Here data is only 16 points
This data fitting was surprisingly slow!
Different optimisers give vastly different results!

 16 / 36

Experiment R3: Target - Poly3 Fit
data: samples_train=16, samples_valid=0
x0=[random, ...], max_iter=200

Higher Order
Poly Fit

Here data is only 16 points
This data fitting was surprisingly slow!
Different optimisers give vastly different results!

 17 / 36

Experiment R4: Target_Trig_trend
data: samples_train=32, samples_valid=0
x0=[random, …], max_iter=200

Linear
Regression

Here data is 32 points
The fit is terrible, all except for one optimisers have
failed!

 18 / 36

Experiment R5: Target_Trig_trend
data: samples_train=32, samples_valid=0
x0=[random, ...], max_iter=200

Higher Order
Poly Fit

Here data is 32 points
The fit is terrible, all optimisers have failed!

 19 / 36

Variational quantum linear regression
Reflections

● Variational quantum regression can only be used to fit
linear data (with some noise)

● Its training convergence is highly sensitive to the
optimisation strategy and the optimiser’s
hyper-parameters

● While the approach taken can be easily adapted to fitting
higher order polynomials, only certain types of functions fit
successfully (mainly those appearing in publications)

● As compared with classical methods of linear/polynomial
fitting, experiments with variational quantum regression
indicate the adopted quantum regression approach is not
promising

● It is worth noting that other, more recent methods such as
QSVT (Quantum Singular Value Decomposition), can assist
fitting any function (or data) with higher-order polynomials

 20 / 36

Variational quantum
Fourier transforms

We consider a quantum model
of the following form, which
takes 1D data

The circuit consists of n layers,
each with encoding block Sn(x),
which is a Pauli rotation gate,
and a trainable block Wn(θn)

We can now rewrite fθ as as a
Fourier-like sum of “frequency”
components.

The circuit is structured as a series of
Wn(θn) Sn(x) layers over a single qubit,
with data repeatedly re-uploaded

Alternatively, Sn(x) blocks can be
arranged in parallel, with Wa/b(θ) blocks
before and after, over multiple qubits

The circuit parameters can then be
trained by the ML optimiser of choice

Schuld, Maria, Ryan Sweke, and Johannes Jakob Meyer. "The Effect of Data Encoding on the Expressive
Power of Variational Quantum Machine Learning Models." Physical Review A 103, no. 3 (March 24, 2021)

Pérez-Salinas, Adrián, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. “Data Re-Uploading for a
Universal Quantum Classifier.” Quantum 4 (Feb 6, 2020): 226.

PennyLane. "Quantum models as Fourier series", 2021.
https://pennylane.ai/qml/demos/tutorial_expressivity_fourier_series.html

where M is a measurement observable,
U(x, θ) is a variational quantum circuit that

encodes data and depends on params θ

W1 S1 W2 S2 W3 S3 W4 S4 W5 S5 W6

Wb WaSn

Th components are
determined by Sn(x)
“frequencies” and
Wn(θn) coefficients

Re-uploading of Sn(x)
allows to vary the
“frequencies” by
accumulating
rotations Wn(θn) .

Serial Model

Parallel Model

 21 / 36

Experiment F1: Fit for Sin function
sin(): samples_train=50, samples_valid=20
layers=1, optimizer=L_BFGS_B(maxiter=16)

Serial
Model

The simplest serial model fits the
sine function incredibly well!

 22 / 36

Experiment F2: Fit for Sin function
sin(): samples_train=50, samples_valid=20
layers=5, optimizer=L_BFGS_B(maxiter=16)

Serial
Model

As the serial model complexity
increases, its performance
decreases!

 23 / 36

Experiment F5: Fit for Sin function
sin(): samples_train=50, samples_valid=20
qubits=5, layers=2, interpretation=parity, optimizer=L_BFGS_B(maxiter=15)

Parallel
Model

Note that a simple experiment
can show that the serial model
directly implements the sine
function, so it works so well!

The parallel model greatly
improves the performance,
however, it is not better than the
simplest serial model!

 24 / 36

Experiment F7: Fit for 2-Sins function
2-sins(): samples_train=50, samples_valid=20
layers=15, optimizer=NELDER_MEAD()

Serial
Model

Any deviation from a simple sine
function, e.g. more complex
curve or inclusion of a trend,
degrades the fit.

 25 / 36

Experiment F8: Fit for 2-Sins function
2-sins(): samples_train=50, samples_valid=20
qubits=5, layers=2, optimizer=COBYLA()

Parallel
Model

Objective function is volatile.
The parallel model degrades
with the number of parameters
(qubits x layers).

The parallel model does not help
(much) with complex functions.
Perhaps data re-uploading could
be beneficial here?

 26 / 36

Quantum Fourier transforms
Reflection

● Serial quantum Fourier transforms work amazingly well with
a single qubit curve fitting

● With increased depth of a serial circuit, the performance
decreases

● This is where the parallel quantum Fourier transform steps
in and improves the outcome

● However, in both cases the more model parameters, the
worse was the outcome (volatility of the objective function)

● Any deviation from a sine function, severely degrades the
fit of both approaches

● The hypothesis that the parallel model could improve if we
were to adopt the serial model’s data re-uploading proved
to be incorrect

● Worth noting that COBYLA and NELDER_MEAD optimisation
excels in its task, L_BFGS_B is painfully slow, even though it
provides good results (when finally completes)

 27 / 36

Quantum
neural networks

● A typical QNN consists of two main
components, i.e. a feature map and an
ansatz (also called variational model)

● The feature encodes the input data and
prepares the quantum system state, using as
many features as there are qubits

● The ansatz consists of several layers and,
similarly to a classical NN, is responsible for
inter-linking the layers - this is accomplished
by trainable Pauli rotation gates and
entanglement blocks

● Finally, the qubit states are measured and
interpreted as QNN output

● In contrast to function / data fitting,
QNNs are able to perform pattern
matching, i.e. work with a sequence of
values themselves rather than with the
mapping between an index and values

● In the following experiments, we will
adopt a sliding window approach to
structuring the time series

● However, the standard QNN model does
not lean itself to time series analysis, i.e.

– You are limited to the TS window of size
equal to the number of qubits

Abbas, Amira, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner. “The
Power of Quantum Neural Networks.” Nature Computational Science 1, no. 6 (June 2021): 403–9.

https://doi.org/10.1038/s43588-021-00084-1.

Schreiber, Amelie. “Quantum Neural Networks for FinTech.” Medium, May 8, 2020.
https://towardsdatascience.com/quantum-neural-networks-for-fintech-dddc6ac68dbf.

Feature Map Ansatz

Pattern
Matching

In Qiskit
VQR Model

 28 / 36

Quantum neural networks
Sliding windows / Serial model

● Experiments show that typical QNN (VQR) do
not perform well with time series data

● The solution is to extend the Fourier quantum
model into the multi-qubit QNN

● This required creation of a custom quantum
circuit, which consists of encoding blocks
Sn(x) and trainable ansatz blocks Wn(θn)

● The Fourier parallel model simply replicated
the Sn(x) blocks, which limited the TS window
size to the number of qubits, and which was
tested to perform quite poorly

● An alternative was to adapt the Fourier serial
model and distribute the TS window data
across the encoding blocks Sn(xk), where each
block would hold as many data points as
there are qubits (k)

● Should the last block Sn(xk) be only partially
filled with TS data, then the identity gates are
used to make the complete block

● The circuit is then trained by optimising the
parameters of trainable blocks Wn(θn)

S1W1 S2W2 W3

time series
sliding window

window mapping
into S(x) blockstrainable blocks W(θ) / ansatz

 29 / 36

Experiment N1: Forecast for 2 Sins
2_sins(): samples_train=70, samples_valid=30
Data: wind=7, horizon=1
MLPRegressor: hidden_layer_sizes=(150,100,50), random_state=2022, max_iter=850, activation = 'relu', solver = 'adam', shuffle=True

Sliding Window
sklearn

MLPRegressor

Excellent fit, however the
model prediction is only at
R2=30% (possibly the model
is overtrained)

 30 / 36

Experiment N2: Forecast for 2 Sins
sin(): samples_train=70, samples_valid=30
Data: wind=7, horizon=1 Prep: fmap=ZZFeatureMap(q=7, lays=1), ansatz=EfficientSU2(q=7, lays=2, ent="full", su2_gates=['ry', 'rz'])
VQR: observable=’ZZZZZZZ’, COBYLA()

Sliding Window
VQR

VQR model worked well only for simple
data sets and shorter TS windows,

With more complex data and longer TS
windows, its performance significantly
degraded

 31 / 36

Experiment N3: Forecast for 2 Sins
2_sins(): samples_train=70, samples_valid=30
Data: wind=7, horizon=1
swindow_parallel_model+NNR+CircuitQNN: interpret=parity, qubits=7, ans_layers=3, optimizer=COBYLA()

Parallel models tend to generate very
large circuits, which may adversely
affect the results.

It is also possible that re-uploading of
data may benefit the outcome!

Sliding Window
Parallel Model

The sliding window parallel model
displayed pretty good prediction of
seasonality.

However, its failed predicting the
data amplitude.

 32 / 36

Experiment N7: Forecast for 2 Sins
2_sins(): samples_train=70, samples_valid=30
Data: wind=7, horizon=1
swindow_serial_model + NNR+CircuitQNN: interpret=parity, qubits=3, layers=3, optimizer=COBYLA()

Sliding Window
Serial Model

This model can handle TS windows
longer than the number of qubits
available!

The model prediction significantly
improved, well above the classical MLP!

The sliding window serial model
demonstrated good prediction of both
seasonality and the signal amplitude.

The model does not re-upload data,
however, it overloads TS data points.

 33 / 36

Quantum neural networks
Reflection

● QNNs are a promising approach to QTS forecasting.
● Unlike other QTS methods, QNNs are capable not only of data

fitting but also pattern matching and prediction.
● However, the standard QNN model consisting of a feature map and

a trainable ansatz, demonstrate poor performance when trained
with more complex data.

● The proposed model for QTS forecasting, extends the single-qubit
quantum Fourier serial model to work in a multi-qubit settings and
more complex data.

● The model relies on the TS data continuity to reduce the need for
re-uploading its input data, and instead overloads the qubits with
blocks encoding the entire TS window of data points.

● The proposed model not only is able to encode more data than the
number of its qubits, but the preliminary experiments also
demonstrated the performance exceeding that of the classical MLP.

Bausch, Johannes. “Recurrent Quantum Neural Networks.” Advances in Neural Information Processing Systems 33 (2020): 1368–79.

Chen, Samuel Yen-Chi, Shinjae Yoo, and Yao-Lung L. Fang. “Quantum Long Short-Term Memory.” In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 8622–26. IEEE, 2022.

Other researchers in QNNs
proposed quantum models
of RNNs and LSTM!

 34 / 36

Working with world data

● Our QTSA research features real-world
applications. For example, our work
involved records of beer sales in USA.

● The preliminary experiments indicate that
more work is required to make the
proposed model practical.

● The future work will include:

– Adoption of different circuit measurement
strategies and interpretation of results.

– Inclusion of non-linearities to mimic NN
activation functions.

– Dealing with larger TS horizons and non-
stationary TS

– Most importantly:
Exploration of avenues for QTSA to
demonstrate real quantum advantage, e.g.
in TS anomaly detection, adoption of
stochastic TS analysis, etc.

 35 / 36

Bird-view of Quantum Time Series Analysis
Summary, reflections and questions

Quantum neural nets
suggest the solution

to QTSA

Quantum Fourier
transforms are

promising

QC creates
opportunities for TSA

TS processing
requires data storage

Variational quantum
regression is too

simplistic
Quantum systems
have no memory

QNNs with data
re-uploading and

overloading are key

Variational quantum
models effectively
simulate memory

 36 / 36

S1W1 S2W2 W3

time series with a
sliding window

encoding
blockstrainable ansatz

feature map

Sliding Window
Serial Model

Quantum
Neural Network

QTSA
Data overloading /

Unlimited size
of TS window

TS window
limited to the

number of qubits

Trainable ansatze
separate encoding

blocks

Trainable
state preparation

Potential for
encoding multivariate TS

x

Single trainable
ansatz at the circuit

end only
trainable ansatz

sliding window
encoding

trainable ansatztrainable ansatz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

