


Quantum technology turns ordinary reality upside down. (Michael Crichton)

IBM has created the largest quantum lab in the world Qiskit is the key to open its doors

of learning with and

## **Experiences** in the Quantum Community IBM Quantum and Qiskit Perspective

Jacob L. Cybulski School of IT, SEBE, Deakin University

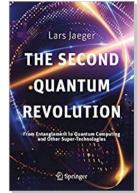
### Quantum Computing Needs diverse talents

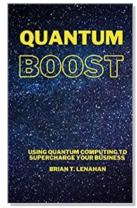
Benefits of Quantum Computing engagement with its application areas flows both ways

Quantum Computing offers novel solutions to previously unsolved problems in many different areas

For example: Physics, Chemistry, Pharma Science, Bio-Tech, Medicine, Finance, Logistics, Comp Sci, Games, Music, Art ...

Quantum Computing rapidly expands its ranks by drawing in scientists from outside its traditional Physics background


Quantum Computing community responds to this phenomenon and supports the newcomers with opportunities to learn its methods, tools and knowledge


The "outsiders" in turn enrich the quantum domain with new perspectives, new insights, new application opportunities, and much more

# Do not believe what you are told...

- The majority of quantum (learning)
   events tell their participants that no
   prior knowledge is necessary
- Do not believe it!
- You always need to do some extra reading and there are great many texts, which are highly recommended by the quantum community
- The majority of these books however are written for physics graduates
- Nevertheless, there are some great readings for people outside Physics, such as computer scientists, so get them and start reading!







## First Steps in Quantum Computing What do you need to learn?

#### Step 1. QC tools

- IBM Quantum Lab
- Python + Jupyter
- Git / GitHub



#### Step 4. Extend and apply

- Error mitigation
- Hardware calibration
- QC and QML applications

#### **Step 2. QC foundations**

- Complex numbers
- Linear algebra
- Probability theory
- Statistics
- QC algorithms

#### Step 3. Learn QML

- Calculus
- Optimisation techniques
- Machine learning
- QML algorithms

## **Engage with Quantum Community IBM, Qiskit and Others**

#### **IBM Quantum Training**

- Qiskit Camp
- Qiskit Global Summer School
- IBM Quantum Internships
   Development, Engineering, Research
- IBM Qiskit Developer
   Exam and Certification

#### **IBM Quantum Learning**

- Qiskit Textbook
- Qiskit Tutorials
- Qiskit Quantum Clubs
- Qiskit YouTube, Medium and Slack
- Qiskit Seminars, Meetups and Unconferences

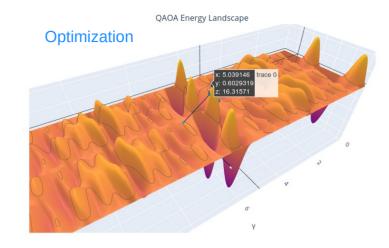
#### **IBM Quantum Challenges**

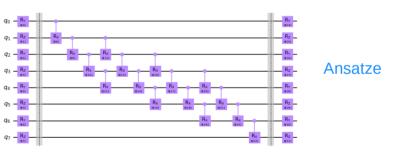
- Qiskit Challenges 2019 Sept, 2020 May, Nov, 2021 May, Sept - Africa
- Qiskit Hackathons
   Korean 24 hours, European R&D 2 months

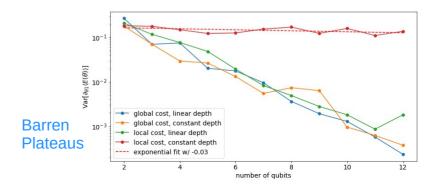
#### **IBM Quantum Badges**

- Quantum Advocate
- Quantum Ambassador
- Quantum Challenge
   Participation, Foundation, Advanced
- Quantum Practitioner

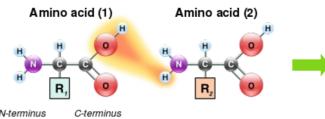
#### **Others**

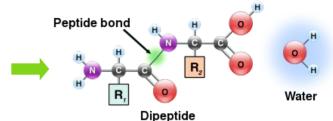

- Qubit by Qubit
- QWorld
- QOSF
- SheQuantum
- PennyLane / QHack
- MIT iQuHACK
- LinkedIn / Twitter


### QGSS'2021 (QC+QML)


5,000 participants

| Day       | Topics Week 1                                                  | Format  |
|-----------|----------------------------------------------------------------|---------|
| Monday    | Vector Spaces, Tensor Products, and Qubits                     | Lecture |
|           | Introduction to Quantum Circuits                               | Lecture |
| Tuesday   | Simple Quantum Algorithms I                                    | Lecture |
|           | Simple Quantum Algorithms II                                   | Lecture |
| Wednesday | Noise in Quantum Computers                                     | Lecture |
|           | Introduction to Quantum Computing Algorithms and Operations    | Lab     |
| Thursday  | Introduction to Classical Machine Learning (ML)                | Lecture |
|           | Advanced Classical Machine Learning (ML)                       | Lecture |
| Friday    | Intro to the Quantum Approximate Optimization and Applications | Lecture |
|           | Building a Quantum Classifier                                  | Lecture |
|           | Introduction to Variational Algorithms                         | Lab     |


| Day       | Topic Week 2                                                | Format  |
|-----------|-------------------------------------------------------------|---------|
| Monday    | From Variational Classifiers to Linear Classifiers          | Lecture |
|           | Quantum Feature Spaces and Kernels                          | Lecture |
| Tuesday   | Quantum Kernels in Practice                                 | Lecture |
|           | Introduction to Quantum Kernels and SVMs                    | Lab     |
| Wednesday | Introduction and Applications of Quantum Models             | Lecture |
|           | Barren Plateaus, Trainability Issues, and How to Avoid Them | Lecture |
|           | Introduction to Training Quantum Circuits                   | Lab     |
| Thursday  | Introduction to Quantum Hardware                            | Lecture |
|           | Hardware Efficient Ansatze for Quantum Machine Learning     | Lecture |
|           | Introduction to Hardware Efficient Ansatze for QML          | Lab     |
| Friday    | Advanced QML Algorithms: Quantum Boltzmann Machines QGANs   | Lecture |
|           | The Capacity and Power of QML & the Future of QML           | Lecture |








### **Challenges**





#### IQC 2020 Nov (3 weeks)

2,000 participants

- Create simple quantum circuits
- Use Grover and qRAM to solve complex quantum games

#### **IQC 2021 May (1 week)**

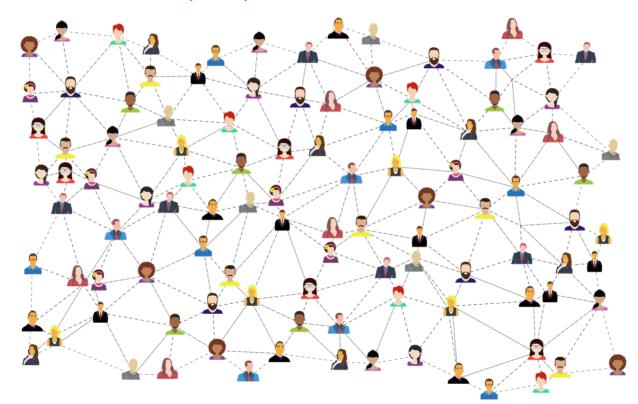
2,200 participants

Main breakthroughs in 40 years of quantum computing

- Construct a Toffoli gate using a specific set of basis gates
- Use Shor's algorithm to factorise a "large" number (35)
- Create circuits to detect and correct errors on qubits
- Calibrate the pulse amplitude of a transmon qubit using Rabi oscillation and then find its transition frequency
- Use Variational Quantum Eigensolver (VQE) to determine the ground state (lowest energy) of the LiH molecule

#### IQC 2021 Africa (11 days)

- Use Quantum Approximate Optimization Algorithm (QAOA) and VQE to maximise crop yield
- Create a quantum share distribution and then apply Quantum Amplitude Estimation to predict future price of options
- Use VQE to explore whether a (toy) anti-retroviral molecule binds with a (toy) virus protease (by finding their ground state)


So far 700 participants

### **Learning with the Quantum Community Questions?**

Connect with open quantum communities

Quantum community supports diverse audience

Learn in quantum competitions



Enrol in quantum summer school

Undertake quantum training and quantum learning

Become quantum advocate