# Deakin Webinar Series

16 October 2020





### Data Science in Organizations: Conceptualizing its Breakthroughs and Blind Spots

Jacob Cybulski Rens Scheepers





2

## Asking questions in Zoom Webinar



Located on the tool bar at the bottom of your screen:

### Q Q&A

Enter any questions you have for the presenters in the Q&A section.

You will either receive a written response or your question will be answered live.

#### 🐽 Recording...

This presentation is being recorded and you will receive a copy afterwards.







- Breakthroughs in Data Science
- Limitations of Data Science in the Business Context
- The Data Science Organizational Framework (DSOF)
- Example application
- Central Argument

Δ



## Breakthroughs and Advances in Analytics and related Big Data, AI, Robotics, Cognitive Service Automation dominate the media...

e.g., Self-driving cars, Image Recognition, Health AI, "Smart-everything", even in the Arts

## The Sky is the limit!

....or is it?

What about Data Science in business contexts?



Data science seems particularly applicable to certain types of business problems

However, many other business problems do not exhibit such characteristics:

Does data science have inherent blind spots for these types of problems?



"Many data-intensive business problems are situated in complex socio-political and behavioral contexts that still elude commonly used scientific methods...."

Limitations in essential elements of Data Science solutions:

- **Data** itself (e.g., unavailable, biased, fragmented, social data not "smooth")
- *Methods* (e.g., optimization not always computationally possible)
- Interface (e.g., human-tool limitations)
- **Cognition** (e.g., understanding of complex phenomena, bounded rationality)

#### Analysis of Data Science Literature (Phase 1, Human Coding)



| Journals Selected for Review of Data Science Papers                    |                     |  |  |  |
|------------------------------------------------------------------------|---------------------|--|--|--|
| Basket of 8 IS Journals                                                | Number<br>of Papers |  |  |  |
| European Journal of Information Systems                                | 7                   |  |  |  |
| Information Systems Journal                                            | 5                   |  |  |  |
| Information Systems Research                                           | 1                   |  |  |  |
| Journal of the Association for Information Systems                     | 9                   |  |  |  |
| Journal of Information Technology                                      | 13                  |  |  |  |
| Journal of Management Information Systems                              | 5                   |  |  |  |
| Journal of Strategic Information Systems                               | 9                   |  |  |  |
| Management Information Systems Quarterly                               | 14                  |  |  |  |
| Journals with Organizational Context Emphasis                          |                     |  |  |  |
| Communications of the ACM                                              | 36                  |  |  |  |
| Communications of the Association for Information Systems              | 32                  |  |  |  |
| Decision Support Systems                                               | 63                  |  |  |  |
| Harvard Business Review                                                | 30                  |  |  |  |
| Human-Computer Interaction                                             | 1                   |  |  |  |
| Management Science                                                     | 9                   |  |  |  |
| MIT Sloan Management Review                                            | 93                  |  |  |  |
| Organization Science                                                   | 9                   |  |  |  |
| Journals focusing on Data Science Topics with Organizational Relevance |                     |  |  |  |
| Such as ACM and IEEE journals and transactions, EJOR, ES with Apps,    | 88                  |  |  |  |
| TOTAL Number of selected papers for review                             | 424                 |  |  |  |
| TOTAL Selected for automatic analysis after preliminary review         | 294                 |  |  |  |



### Analysis of Data Science Literature (Phase 2, using Data Science!)

#### KH Coder

Lexical analysis, start and stop words Documents-vs-terms matrix representation Co-occurrence analysis (unsupervised) Fruchterman and Reingold layout Minimum spanning tree display only 40-50-80-100-150-200-250-300-400-450 links tested Tracking community evolution and mapping Final network of 450 links

Cognitive

Domain

Knowledge

Management

Business

Phenomena

Distributed

Cognition

Communities of

Practice

Value

Creation

Business

Analysis



### **Cybernetics to the rescue -The DSOF Framework**



Ashby's Law of Requisite Variety is central to our analysis.

The law states that the *variety* of a *regulator* need to exceed the variety of the *phenomenon* to be controlled, in order to achieve *homoeostasis*.

Typically variety is measured in the number of the system potential states.

Example of driving a car:

The variety of the driver (the regulator) must exceed that of the car (phenomenon) to keep the car under control. However, factors such as increased speed, or unanticipated environmental disturbances (e.g., bad weather or stray animals) would cause the variety of the controlled phenomenon (car) to exceed that of the driver, and result in an accident.



#### Variety of the Phenomenon

### Examples

| Example                     | Data                                                                                                                     | Method                                                                                      | Interface                                                                           | Cognition                                                                                                      | Regulator's ability to<br>control phenomenon                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Pizza Quality               | Availability of structured and unstructured data                                                                         | Image analysis through deep learning and AI                                                 | Simple interactive interface                                                        | Replacement of intuition with plausible reasoning                                                              | Solving the problem                                                        |
| Traffic Congestion          | Availability of Real-time<br>data                                                                                        | Computationally<br>challenging<br>Short-term Predictable                                    | Can visualize                                                                       | Well understood                                                                                                | Significantly improving the situation                                      |
| Churn                       | Availability of historical trends                                                                                        | Probabilistic churn<br>modelling                                                            | Interactive                                                                         | Complex problem,<br>Bias,<br>Emotional<br>Well understood                                                      | Significantly improving the situation                                      |
| Stock market<br>predictions | Not reflective, High<br>volume, High velocity,<br>Too many patterns<br>Vast amounts of shared<br>data                    | Domain specific<br>solutions,<br>Computationally<br>challenging<br>Short-term Predictable   | Abstract<br>Lack of visual<br>metaphor for non-<br>numeric<br>Can visualize in part | NP complete problem,<br>Irrational,<br>Emotional<br>Partially understood                                       | Limited ability to<br>control, other than<br>gaining some<br>understanding |
| Cyber attack                | Not reflective, Poor data<br>quality, High velocity,<br>No currency, Legal and<br>ethical limits<br>Malware repositories | Domain specific<br>solutions,<br>Human behavior,<br>Not Predictable<br>Specialist analytics | Difficult to visualize,<br>Lack of visual<br>metaphor                               | Poorly understood (previous<br>attacks), Hard-to-deal-with<br>digital subcultures<br>Growing body of knowledge | Limited ability to<br>control, other than<br>gaining some<br>understanding |



Advances in data science in aggregate across the four DSOF domains could constitute requisite variety and therefore enable organizational solutions to particular classes of business problems.

For some business problems, insufficient levels of variety exist in one or more of the DSOF domains due to limitations in data science today.

- If cross-domain variety can compensate for these limitations, then inroads can be made into such problems.
- If not, data science has limited potential to effectively address such phenomena, at least in the foreseeable future.