Predictive Analytics for the Uninitiated Concepts, Decisions and Classification

- What is Predictive Analytics?
- Data mining and model building
- Predictive applications
- Tools and technology
- Analytic process and its design
- What is classification
- Classification models
 - k-NN Nearest Neighbour
 - Decision trees
- Applying predictive model
- Model evaluation
 - Training performance
 - Hold-out validation
 - Cross-validation
- Model optimisation
- Summary and conclusion

Based on notes by Jacob Cybulski Also some examples and models are based on the publically available YouTube videos by ironfrown (Jacob in the free)

DEAKIN UNIVERSITY

Predictive analytics

encompasses techniques that help analysing current and historical facts to make predictions about future or otherwise unknown events

(Wikipedia)

Predictive analytics

relies on methods and techniques from many disciplines, to include:

- Mathematics
- Statistics
- Operations research
- Information science
- Computer science
- Artificial intelligence
- Data visualisation
- Databases
- Data warehousing
- High performance computing

Predictive analytics

provides the foundation of methods to build models useful in:

- explaining the past,
- **acting in the present, and**
- **predicting the future.**

Some inter-related terms

- **Data science**
- Data analytics
- Text analytics
- Data mining
- **Data wrangling**
- Pattern recognition
- Machine learning
- **Cognitive computing**
- **Stream analytics**
- Descriptive analytics
- **D** Predictive analytics
- Prescriptive analytics
- Decision analytics
- Business analytics
- Statistics

DEAKIN UNIVERSITY **Predictive analytics** gives you an analytics process to analyse data over time, leading to more refined outcomes and corrective actions.

The process allows analysts to observe real world entities and then *estimate* their unknown or hidden values, identify their *classification*, and establish their *ranking* or *grouping* in relationship to each other.

Commonly, the same model can be used for *explanation*, *decision support* and *prediction*.

The data sets used in model building are often very large, as it may include data of their own or collected by other organisations, also obtained from open data repositories.

Best-fit-line

30

2

Sales (\$M) 20 Sales = 7.03259 + 0.04754 * TV

50

100

150

TV (\$K) Regression with Residuals and Prediction

200

Mathematical Model

Visual Model

 $\mathbf{v} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \times \mathbf{x}$

300

250

Machine Learning Model

DEAKIN

- **R / MRO with R Studio**
- Python / Anaconda with Spyder
- Orange (for Python)

O/S Deep Learning Tools:

Tensorflow, Keras, Caffe, CNTK, Torch, Theano, MXNet, H2O.ai

Commercial / Community Tools:

- RapidMiner Studio
- KNIME Analytics Platform

Commercial Tools:

- **SAS Enterprise Miner**
- **IBM SPSS Modeler**
- SAP BusinessObjects
- Microsoft Azure ML Studio
- Oracle BI
- Alteryx

Approaches:

- Statistical methods
 - Linear regression
 - Logistic regression
 - General linear models
 - Naïve Bayes models
 - Bayesian modelling
 - Association analysis
 - Time series analysis

Machine Learning

- Lazy Learners (k-NN)
- Classifiers
- Decision trees
- Neural networks
- Cluster analysis
- Text mining
- Support vector machines
- Anomaly analysis
- Genetic algorithms
- Induction and deduction

DEAKIN

UNIVERSIT

Install RapidMiner

- At Deakin AppsOnDemand, we have RM 6. However, at home install the most up-to-date version of RM Studio 7.xxx
- Install RM Studio 7.xxx from: <u>https://rapidminer.com/</u>
- You need a Laptop or PC running Windows, Mac OS or Linux (e.g. Ubuntu); 8-16Gb RAM; 64 bit OS preferred
- Once installed, for free and unrestricted use of RapidMiner Studio you will need to be registered as "educational"

Some great RapidMiner extensions

- 1. Run RapidMiner and then select Help > Marketplace, now go to...
- 2. Updates Tab: install any updates to RapidMiner (e.g. a newer version)
- 3. Top Downloads Tab: Text Processing, Web Mining, Weka Extensions, Anomaly Detection.
- 4. Search Tab: type in SOM and install Self-Organising Map; type in Recommender and install Recommender Extension.
- 5. Restart RapidMiner
- 6. You are now ready to use RapidMiner Studio to do some serious data mining and data analytics.

In case you wanted to use RapidMiner on your own computer!

Thinking Point on Classification

- (Nearly) everything in the world can be described with a set of unique *classes of labels*, such as:
 - Toyota Prado 2012 in the car yard will be "Sold" today, or
 - James' final mark in MIS171 will be "HD"
- **Objects of the same class can be considered** *similar***.**
- Can we rely on the past observations to predict classes (or labels) of objects yet to be observed and events likely to happen in the future?
- The answer is Yes and the method is called *classification*!

Values

 The world and our naive understanding of its complexity dictate the rules! Data analytics systems help building (quality)

Trucks have at least 3 axles and/or are red Cars have 2 axles and/or are small

Decision Tree

Copyright © Deakin University

The world is imperfect!

> **DEAKIN** UNIVERSITY

The world and our naive understanding of its complexity dictate the rules! Data analytics systems help building k-NN Truck classifiers.

Truck

Trucks are parked near trucks and cars are parked near cars

k Nearest Neighbours

Truck

Truck

What am I? Ask three closest vehicles!

Car

How about asking more than three closest vehicles, perhaps 4, 5 or 6?

What if car attributes are not measured in meters but in their age and price?

Truck

Car

Truck

The world is never perfect!

Slide 8

In this example, data points consist of pairs of attributes, i.e. the car's age and its price. Can we measure "similarity" between based on their "distance"?

DEAKIN UNIVERSITY

NVIDIA self-driving cars: Should I drive or stop? https://www.youtube.com/watch?v=MF9NwOTLLgE

USA Institute of Health Metrics and Evaluation: What are my health risks? http://www.healthdata.org/infographic/when-and-why-peopledie-united-states-1990-2013

Christopher Healey: Is this tweet positive or negative towards the lecturer? https://www.csc2.ncsu.edu/faculty/healey/tweet_viz/

IBM Watson – Morgan movie trailer: Is this movie clip sufficiently scary to be included in a trailer? <u>https://www.youtube.com/watch?v=gJEzuYynaiw</u>

Different kinds of classifications, i.e. to detect obstacles in front of self-driving cars, sense emotion of movie viewers, explain health risks and identify sentiment of Twitter messages. Once we classify past examples, we can then apply such classification to future individuals (predict their class / decision).

Copyright © Deakin University

Applications

Credit approval Target marketing Medical diagnosis Fraud detection Sentiment analysis

Classification

 The process of organizing a set of observations (data samples) into classes, each identified by a label (nominal)

Model (Classifier)

- Existing data is used to create a classification model
- The model is (usually) simpler than a collection of samples used in its creation

Prediction

 The model is subsequently used to classify new data, i.e. predict missing or unknown class labels

The Entire Process is More Complex !!!

- Define a business problem
- Select data
 - Structured and/or unstructured
 - What to predict (label)
 - What are the predictors (attributes)
- **Explore and understand data**
 - Statistics
 - Distribution
 - Relationships
- Build the model
- **Evaluate model performance**
 - Training performance
 - Hold-out validation
 - Cross-validation
- Integrate the model with enterprise systems
- Deploy validated model
 - Use the validated model
 - Predict labelled attribute
 - Account for possible error
- As the world changes assess the model results and its performance
 - a new model may be needed!

The management of the legal firm Righteous Compensation Lawyers asked you to develop a computerassisted method of analysing Worker's Compensation claims, capable of identifying: Subrogation potential, i.e. possibility of insurance company to recover all its costs due to the fault of the parties involved;

Motor-vehicle injuries, detected in claims that are likely to involve motor-vehicle accidents and which should be processed within a different jurisdiction; and finally,

Fraudulent claims.

The firm provided you with a sample of over 3000 examples of claims described in terms of injured body part, the nature and cause of injury, as well as adjustor notes taken by insurance employees when in contact with the claimants, their employer or representatives. After the lengthy process, each of the claims has been verified and annotated with the flags indicating if the injury involved a vehicle (whether or not stated in the claim), whether it ended in the recovery of all payed entitlements and costs, and whether or not fraudulent claims have been detected and the applicant eventually sued.

Claim Number	Adjustor Notes	Body Part	Nature of Injury	ure of Injury Cause of Injury		Subrogation	Fraud Flag (
4487308	Strained neck trying to catch falling product.	Neck	Sprain/Strain	Slip/Fall	0	1	0
309831108	Fingers caught in machine.	Finger	Contusion	Caught in Machine	0	0	0
1301185908	Claimant caught left hand between two machine so	Hand	Laceration	Equipment/Machinery	0	0	0
1716965808	Claimant states that while he and coworker were dri	Multiple	Contusion	Struck Object	1	1	0
1924817308	Smashed right second finger, was using a drill pres	Finger	Contusion	Struck Object	0	0	0
2500385808	Claimant alleges that he injured his right knee. Thre	Knee	Sprain/Strain	Unknown	0	1	0
2525865808	Left ankle pain due to getting in and out of a truck re	Ankle	Repetitive Motion	Repetitive Motion	1	0	0
2601381908	While trying to avoid hitting a car out of control, came	Neck	Contusion	MVA	1	1	0
2613478908	Fell in blast freezer, injured back and side.	Back	Contusion	Struck Object	0	0	0
2614936508	Employee was struck by automobile contusion to	Knee	Contusion	MVA	1	1	0
2701592908	Employee alleges while letting a machine down into	Shoulder	Contusion	Struck Object	0	1	0
2714742208	Employee failed to yield and was hit by an oncoming	Multiple	Contusion	MVA	1	1	0
2829016508	Claimant states he was loading a patio door onto a t	Knee	Sprain/Strain	Lifting	1	0	0

Sample claims records

DEAKIN UNIVERSITY What we have: data from the past, e.g. information about the previously processed claims classified by subrogation flag (Data).

How are we going to do this: we will use training data to create a model capable of claim classification by subrogation flag (Training).

xampleSet (911 examples, 4 special attributes, 4 regular attributes)												
Row No.	Subrogation	prediction(S	confidence(1)	confidence(0)	Body Part	Nature of Inj	Cause of Inj	Vehicle Flag				
1	0	0	0.200	0.800	Hand	Laceration	Equipment/M	0				
2	0	0	0.200	0.800	Ankle	Validation – Classify existing cases and compare against known						
3	1	1	1	0	Knee							
4	1	1	1	0	Shoulder							
5	0	1	0.600	0.400	Hand		classification					

Row No.	Claim Number	Adjustor Not	Body Part	Nature of Ini	Cause of Ini	Vehicle Flag .					
		,	,								
1	160122408	Laceration to	Finger	Laceration	Struck Object	0					
2	360784508	While unloadi	Back	Sprain/Strain	Liftina	0					
3	860564608	Claimant wa	Hand	New Ca	New Cases – Collect new						
4	3060046708	Claimant wa	Head	with mis	unclassified data, i.e. with missing information						
5	3160698008	Alleges carpa	Wrist	TEDennie Ino							

ExampleSet (1432 examples, 3 special attributes, 6 regular attributes)

Row No.	prediction(S	confidence(1)	confidence(0)	Claim Number	Adjustor Not	Body Part	Nature of Inj	Cause of Inj	Vehicle Flag			
1	0	0.200	0.800	160122408	Laceration to	Finger	Laceration	Struck Object	0			
2	0	0.200	0.800	360784508	While unloadi	Back	Oproin/Otroin	Liffing				
3	0	0.200	0.800	860564608	Claimant wa	Hand	Applic	ation - Use	the			
4	1	0.800	0.200	3060046708	Claimant wa	Head	classif	y all new ca	ises			
5	1	0.800	0.200	3160698008	Alleges carpa	Wrist	Repetitive Mo	Repetitive Mo	0			

ExampleSet (2	126 examples, 1 spe	cial attribute, 4 re	gular attribute	s)							
Row No.	Subrogation	Subrogation Body Part Nature of Inj Cause of Inj Vehicle Fi									
1	1	Neck	Sprain/Strain		Slip/Fall	0					
2	0	Finger	Contusion	n	Caucht in Ma	0					
3	1	Multiple	c	Training – Create a							
4	0	Finger	o pre	predictive model able to classify existing data							
E	4	Kasa									

How would we know if it worked: we will use the validation data not used in training to test accuracy of predictions (Validation).

How about future cases: we will collect new cases of insurance claims without subrogation flag (Deployment).

What we want:

(Application).

we will apply the validated model to predict whether or not the claim could end in subrogation

Demonstration Using k-NN Classifier

- All slides from this point on in the lecture are for your reference only
- Watch and learn from the hands-on demonstration of building a classification model in RapidMiner Studio
- **You can also view the demonstration in a pre-recorded video**
- Observe that all modelling is done in very little steps
- **You do a little modelling, run and test, then do a little analysis**
- Try doing the same: watch a little, work with RapidMiner Studio a little and learn a little

Enjoy the experience

Press Run to execute the process

RM has two (or more) important views: **Design View** in which you design your analytic process and **Results View** in which you can inspect data produced by your analytics process, in tables and charts.

(1) Install RapidMiner. (2) Create a Project folder on your disk drive. (3) Create a Data folder inside the Project folder. (4) Get CSV files and place them in the Data folder.
(5) Start RapidMiner. (6) Configure RapidMiner repository to point to your Project folder and be named as you like. (7) Start a new RapidMiner process. (8) Save it inside your Project folder (or its sub-folder). (9) Run and Explore the Results. (10) Enjoy RM Analytics!

File	Edit Process View Conner	ctions Clou	id Setting	ers Comp V2A Get Data - s Extensions	- RapidMiner Studio	Educational 7.5.003 (Diacobs-Vizard	ck Res	ults to see	the o	utput			- U	×
				•	Vie	ws: Design	Results H	ladoop Data						Need help?	•
Ope	rators X		Pro	cess ·····	Press	Run to				-	Paramete	rs X			
Sea	rch for Operators			Process >	<i>lecule</i> in	e process		100%	p p p 🚅 ፋ	•					
• 🗖	Data Access (47)		^ Pro	cess							logverbosity		init	•)©
• 🗖	Blending (77)			Read CSV							logfile				1
•	Cleansing (26)		■ P ^{inp}	🖌 fil 📩 out 🕅 🚽						res					
	Modeling (129)										resultfile				٩
//lacobs Rend	SCOTING (9)	in V2A Get Data* – Rai	nidMiner Studio Edu	urational 7.5.003 @ Jacobs-Vizard			- 0	×							1
Eile Edit Proc	cess <u>View Connections</u> Clou <u>d</u> Settings Exter	nsions					_				random see	ed	-1		D
			Views:	Design Results	Hadoop Data		Need h	elp? 💌		res (send mail		never	•	Ð
Result History	× 🚦 ExampleSet (Read CSV) 🛛 🛛	ExampleS	et (Read CSV)	×				_							<u> </u>
	Name	- Туре	Missing	Statistics			Filter (8 / 8 attributes): Search for Attributes	🔘 Nominal	values				×	•	٢
Data	Data		0	Least Mos head-on [] Ider. (1) Mo	ator ve [] dent. (2) M	otor vehicle accident. (2). No	n-fault auto accident. (2)[3032 more]		Click de	etails t	o see	the			
_								Q	🔍 table of all uni			ique values			
Statistics				600 500 400	Least	Most	Back (706), Finger (263),								
1	Body Part	Polynominal	0	200 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ear (3)	Back (706)	Head (233), Arm (215), [23 more]	index	Nominal value	ADSOIU	te count	Fraction			
				Open chart			Details	1	Einger	705		0.232		-	
Charts				1.000 750	Least	Must Sprain/Strain (1221)	Sprain/Strain (1221), Contusion (941)	3	Head	203		0.087	- 11		
2	Nature of Injury	Polynominal	0		Death (1)		Laceration (252), Fracture (147), [13 more]	4	Arm	215		0.071			^
Advanced Charts				Open chert			Details	5	Hand	200		0.066	- 11		
				933 432	Least	Most	Values	6	Multiple	160		0.053	-		=
Annotations	 Cause of Injury 	Polynominal	0	300 300 0	Environmental (3)	Struck Object (678)	Lifting (465), MVA (375), [17 more]	7	Knee	151		0.050			
				Deal Deal Deag More Us.			Details	8	Wrist	136		0.045			
				2,000 2,000 1,500	Least	Meat	Values	9	Leg	131		0.043			
	Vehicle Flag (1=Motor Vehicle I	(1=Motor Vehicle I Binominal	inominal 0 1.000	1.000 500 0	1 (558)	0 (2479)	0 (2479), 1 (558)	10	Foot	128		0.042	- 11		
				Open chart			Details	12	Ankle	120		0.040	- 11		
				1,780 1,500 1,290	Laast	Most	Values	13	Neck	111		0.037			
	 Subrogation (1=Yes 0=No) 	Binominal	0	200 500 190	1 (1135)	0 (1902)	0 (1902), 1 (1135)	14	Eye	105		0.035	- 11		
		- b		Open chert			Details	15	Spine	41		0.014			
	Showing attributes 1 - 8	- \-					Examples: 3,037 Special Attributes: 0 Regular Attrib	16	Groin	37		0.012			
		- \						17	Elbow	34		0.011			
	Click the a	attribu	ite na	me to expa	nd its			18	Torso	34		0.011			
	det	ails ar	nd see	e the chart				19	Face	26		0.009			
	Ueu	uns ai	14 300					20	Toes	20		0.007			
								21	RIDS	15		0.005			
													X <u>C</u> lose		

Read the data – ensure all attributes (variables) are defined correctly. Work in small steps, so execute this "mini" model and see the results.

Conduct a quick overview of the data set. Check the basic statistics (min, max, mean, median, mode), distribution and values of all attributes.

Analyse each attribute in more detail, e.g. use column charts to investigate prevalence of certain attribute values.

Also look for possible relationships between variables, e.g. use stacked column charts and seek insights emerging from data.

Inspect raw data. If nominal / binomial variables were coded numerically, check how it was done. Is coding meaningful and correct?

Decide what aspect is to be predicted (something we cannot control), which becomes the target of your investigation, and define it as a "label" attribute. Select those attributes, which are the potential predictors of the labelled attribute, and define them as "regular". Execute the model and check!

DEAKIN UNIVERSITY

The selected data can now be used to develop a predictive model, e.g. we could use k-NN (k=5). The new model is then created. The model can then be written into a file and deployed. It can also be instantly applied to a new data to predict subrogation opportunities. However, how would we know if the model produces results that can be trusted?

Once the model is created it can be tested on the same data that was used to create it. The model accuracy (the proportion of correct predictions) can then be reported. This result, however, cannot be trusted – all it tells us is how much of training data the model can remember!

- Instead, we can split the data into two parts, one to train the model (70%) and one to validate it (30%)
- To ensure the label values are distributed evenly between these two parts, we use stratified sampling
- □ We then create a k-NN model (k=5)
- The new model can then be applied to validation data, which was held out from training
- Performance statistics are calculated and reported

Experiment with different splits of data between training and validation sets, set the "local random seed" to values:

- 1, 2, 20, 1992, 999
- What have you observed?
- Why is this happening?

Experiment with different settings of the k-NN model, while keeping the same random split, set "k" to values:

- 5, 10, 20, 50, 100, 200
- What have you observed?
- Why is this happening?

Cross-validate the model by setting 10 folds, so that model training will be done on 9 folds and model validation on 1 fold, 10 times.

- When we have a small data sample, the model performance in hold-out validation is a lot of luck (good or bad)
- We may get vastly different model accuracy depending on the data split
- Cross-validation is thus used to determine a more realistic model performance

- We split data into n folds (n=10)
- We use n-1 folds to train the model and 1 fold to validate the model
- We repeat it n times, each time using a different fold for validation
- The model performance is then given as an average performance of n runs

alidate

DEAKIN

UNIVERSITY

Thinking Point

- Can the k-NN model be improved by optimizing its accuracy in respect of many possible "k" values?
- Can the prediction be improved by replacing k-NN with a different model, e.g.
 - Decision Tree, Random Forest or Gradient Boosted Trees
 - Logistic Regression or Neural Networks?
- Can the model be improved by processing the claims' adjustor notes? Perhaps by relying on the text analytics methods, which are well supported in RapidMiner, and which can significantly enhance the model prediction.
- All such extensions, however, require more advanced analytic techniques, which are explained in further business analytics units.

Demonstration Using Decision Trees

There are many other methods of data classification

- One of the best performing are Decision Trees (or their Forests and Ensembles) which can be used for classification and estimation
- They can use both categorical (nominal) and continuous (interval) target variables
- Decision tree structure can be used to generate (business) rules able to classify or predict target variable based on the observation attributes
- Decision tree structure (sometimes) can be used to explain the prediction process to the client

Decision Trees in RapidMiner

In the previously developed model, all we have to change is to replace k-NN with one of many "decision tree" models

- Classification is the process of organizing a set of observations into a collection of labelled classes (categorical / nominal)
- Classification process commonly includes the model creation, its improvement and the subsequent use
- Similarity models compare observations to prototypes well-known example or representatives, which may include all past observations – this could facilitate non-parametric classification or regression
- k Nearest Neighbour (or k-NN) models classify new observations by considering values of k closest matching prototypes
- There are many other modelling approaches to classification, e.g. Decision Trees, Gradient Boosted Trees, Random Forest (which are all decision trees or their collections)
- **Decision trees often give the best predictive performance**
- Performance of classification models is often measured in terms of their accuracy
- When the class we want to predict is not balanced, i.e. there are great many values of one type than others, then a simple accuracy will not work – there are many advanced approaches to deal with this. A simpler method is to check a "kappa" statistic which gives a more conservative assessment of accuracy
- For classification purposes, it is also possible to use models commonly used for estimation, e.g. (logistic) regression and neural networks.

