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PRINCIPLES OF TEXT VISUALISATION:

TEXT REPRESENTATION, EXPLORATION AND INSIGHT GENERATION

Jacob L. Cybulski

Visual Analytics Collaboratory
Depft of Info Sys and Bus Analytics

Deakin Business School
Faculty of Business and Law
Deakin University

To capture the essence of
information in the moment of time




SAS, R
RapidMiner
D3.js Three.js
Unity 3D

NS Devices

Collaborative & Interactive
3D Visual Analytics Education



S0 E S EARCH: 3D VISUALISATION
INTERACTIVITY AND COLLABORATION

< InfiniteWorld

Custom-built environment:
Visual Analyst 3D (Unity 3D / C#)
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https://www.youtube.com/watch?v=8Qp6YAUS6IQ&index=1&list=PLTNk8YAaQSkrA-vlo1P6lSJnGih15tbhu
https://www.youtube.com/watch?v=8Qp6YAUS6IQ&index=1&list=PLTNk8YAaQSkrA-vlo1P6lSJnGih15tbhu

TEXT MINING and TOOLS

Association Rules WHYT EXT?

with RapidMiner

Foam Trees
with Carrot 2

iz | | Structure | | Predictive Boulder \‘/RB"J

However much can
be done with some
of the off-the-shelf
visualisation tools
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« And more... « And more...




T Glston
S— QUESTION

How can data mining and data visualization
assist analysis of interview transcriptse

KH Coder (Koichi HIGUCHI, Ritsumeikan University)
Gephi (Gephi Consortium)
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— FREE TEXT

At the beginning there was text.

And the text was without form, and void; and darkness was
upon the face of the data analyst...

Interview with Daniel

Facilitator: So what's your role heree What type of tasks and jobs do
you do?

Daniel: So, data analyst is my role and a lot of times it's dealing with
clients about knowing and finding out exactly what they want to
report on and helping them and engaging them with tools. So, the
tools we're using currently are ProcureTrak or Omniscope, and that's a
data visualisation tool. And so it's a lot fo do with client relationship but
also, obviously, with their data. So, it's pretty much end to end - so, get
the data from them, go through the data, put some business rules
around the data, see what type of reports they want, giving them
back the reports seeing if that's what they want to see or if they want
’J[o see something else. So adjust the reports based on what they want
O see.

... and 5891 more paragraphs of this kind in 27 interviews ...



KH Coder was developed by
Koichi Higuchi, at Ritsumeikan
University, Japan.

It is a free software for quantitative
analysis of text.

While it was originally developed
for Japanese language, it is also
available for the analysis of text in
English, French, German, Italian,
Portuguese, Spanish, Russian,
Chinese (simplified) and Korean.

It has a rich suite of tool for lexical
analysis, as well as, document and
term analysis and visualisation.

It includes the following features:
» Lexical analysis of text
« Statistical reports
« Correspondence analysis
« Multi-dimensional scaling
« Term clustering and analysis

« Bayesian modelling and
classification




UNIT OF ANALYSIS:
DOCUMENTS AND TERMS

Sentences

The first step in text analytics “7‘ 'e“g‘_:‘g_j 'e“g‘“ﬁ‘z “a‘““; ° ‘h‘”g ""““e‘: : . :
is to decide on your unit of sl 255 1 0 0 0 0 0 0
GI‘ICI|YSISZ 9 12 5 0 0 0 0 0 0
10 95 40 0 0 0 0 1 0

« Sentence 11 37 14 0 0 0 0 1 0
12 5.5 3 0 0 0 0 0 0

« Paragraph 13 119.5 61 0 0 0 0 0 0

grap

5 1 0 0 0 1

14 275.5

e |Interview

Paragraphs
e Record grep

id length_c business
1 165
2 164.5
3 31.5
4 287
5 37.5
6 95
5
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We often call our chosen unit
of analysis document

37

5.5

119.5

10 275.5

Each document is then
parsed and split into words
and the words are changed
info a standard form, known
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as “stem”, “root” or “lemma Interviews
We Wi" Cd" “- a ferm name length_c datum people business report
Jeffrey 223845 64 64 - 65 48
A common representation of e o > - .
documents is in the form of Clark 24425.5 61 s . 6 2
vectors of term frequenc:es lan 13739 58 12 : 20 42
Rachel  21534.5 49 36 , 55 26
Such vectors could be hugel! Ruofan 24076 167 35 - 59 27

Sahil 19800 115 17 . 22 32



decision

process
analytic
sort
informatio
client
type
organizatic
project
company
bit

year
work
number
level

term
example
kind

As a side effect of the initial analysis
we have access to lexical attributes
of every term which appeared in

ProperNoun

2021 BI

1033 Excel
1031 Australia
1024 Cognos
738 Data

591 ASP

562 Uni

535 SQL

474 Microsoft
468 SLT

462 White

452 Business
440 ETL

438 Office
415 SharePoir
329 IBM

326 Melbourne
324 Warehous:
323 PowerPoit
293 SAS

280 SPSS
277 Oracle
276 Victoria
270 Group
263 Daniel
257 SAP

246 IPad

TAG
216 Facilitator

112 Facilitator1:
75 Facilitator2:

55 Shaun
46 Hill:

43 lan:

42 Daniel

40 Nathan
35 Jeffrey:
34 Glenn

34 Facilitator3:

31 Jordan:
31 Rachel:
31 Madison:
31 Arnaldo
24 Myla

24 Ross:
23 Alfred:
22 Andrew
22 Emily:
22 Scott:
21 Clark

21 Ruofan
20 Matt:

19 Robert:
19 Chandler:
18 Sahil:

Adj
1353 different
272 able
191 good
140 big
139 sure
126 new
117 important
111 particular
107 okay
105 great
93 interesting
87 little
87 better
83 real
81 operatione
81 certain
76 right
73 specific
72 interested
64 simple
60 technical
58 best
57 financial
56 long
56 useful
51 strategic
49 easy

Adv

513 just
326 actually
270 really
233 probably
197 quite

188 maybe
166 right

155 basically
143 usually
127 obviously
126 certainly
125 necessaril
117 absolutely
117 exactly
116 pretty
111 generally
95 definitely
84 yes

83 far

81 quickly
79 away

74 particularl
73 especially
71 mainly
64 fairly

62 currently
61 directly

each document. We also have
vector representation of each
document.

More importantly:

« Based on what terms appearin
each document we can judge the

documents similarity.

« Based on what documents the
terms appear in we can also judge

the terms similarity.

Verb

1116 think
606 say
566 know
356 use
229 look
166 want
163 need
149 make
107 come

94 work

89 try

79 understan

76 talk

75 mean

67 start

66 happen

65 like

63 help

56 ask

55 create

49 build

48 tell

46 provide

45 involve

44 change

39 run

38 guess

company(323)

can also be analysed for the co-

TEXT UNITS
CHARACTERISTICS

Documents, paragraphs or sentences

occurrence of terms.

The statistics about text units can be
used to define their “similarity” or
“correspondence” (e.g. TF-IDF, term-
context or entropy), which in furn can

be interpreted as their distances.

Text units can then be visualized as
points in multidimensional space.

cw: datum
1.657916325
0.47044335
0.582070707

business(1022) 0.627192982

0.487854251
636363636
0.644210526
0.723684211
0.549723757
0.484419263
0.59375
0.491712707
0.673740053

information(438) 0.65
0.648318043
0.600682594
organization(326) 0.608058608
0.612068966
0.434456929

Term-to-term “context” distance

w: people
0.23461854
1.272167488
0.296717172
0.346491228
0.299595142

0.277894737
0.320175439
0.281767956
0.359773371
0.321022727
0.314917127
0.305039788
0.352941176
0.155963303
0.307167235
0.340659341
0.262931034
0.314606742

cw: thing
0.2707137
0.307881773
1.301767677
0.302631579
0.208502024
0.426262626
0.338947368
0.412280702
0.218232044
0.198300283
0.261363636
0.201657459
0.557029178
0.305882353
0.302752294
0.38225256
0.278388278
0.284482759
0.239700375

cw: business
0.273174733
0.333743842
0.284090909
1.494152047
0.230769231
0.341414141
0.271578947
0.353070175
0.29281768
0.348441926
0.397727273
0.580110497
0.297082228
0.388235294
0.226299694
0.300341297
0.472527473
0.379310345
0.438202247

cw: report
0.150943396
0.227832512
0.151515152
0.156432749
1.493927126

0.216842105
0.155701754
0.138121547
0.235127479

0.15625
0.143646409
0.137931034
0.205882353
0.226299694
0.211604096
0.131868132
0.137931034
0.108614232




At this point any collection of
documents can be represented as a
space of term vectors.

Each of those terms defines a variable
value, which can indicate frequency of
that particular term in a document.

Term frequencies are often weighted
against the term frequency across all
documents (TF-IDF) or they are
transformed into entropy measures.

There can be a very large number of
term-variables, possibly up to 20,000.

The purpose of text visualization is to
transform this vector space and reduce
its dimensionality so that it could be
displayed in 2 (planar) or 3 (spatial)
physical dimensions, plus a number of
perceptual dimensions, using colour,
density, texture, transparency, etc.
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A number of mathematical and .
computational methods can assist in this
process, e.g.

* Principal component analysis (PCA)

« Singular value decomposition (SVD)

« Multi-Dimensional scaling (MDS)

» Correspondence analysis (CA)

* Non-linear dimensionality reduction (NLDR)
« Manifold learning algorithms

» Projection-based dimensionality reduction
» Clustering techniques



CORRESPONDENCE
ANALYSIS

2" Correspondence Analysis of Words

Cross-tabulation of documents vs. term
frequency allows calculation of Chi-Squared
distance between terms, which can be used in
singular value decomposition to identify planar
coordinates of terms and documents.

model

NYelelle] |

2% Correspondence Analysis of Words

proximity of
terms in 2D
provides an
Intuition of
their similarity.

Clusters of
spatially close
terms give an
intuition of
terms forming
larger topics.

Note that 2D
projection
simplifies term
relationships
and its quality
is assessed as
a % of the
total inertia.

Dimension 2 (14.06%)
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The same approach can be
used to assess similarity of terms
(black), as well as, documents or
their groups (red).
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MULTIDIMENSIONAL

SCALING

* Unlike correspondence and co- B2 Mot Dimensiona Scling of Werd
occurrence analysis, | .
multidimensional scaling aims to
reduce dimensionality of
geometric spaces.

 The method uses an algorithm
that tries to re-arrange all points
iIn multi-dimensional space with

an aim to fit (squeeze) them into : example)
a required number of
dimensions. 4D

° The dISTOﬂCGS beTweeﬂ O” pOIﬂTS \»:\.rul UH' (visualisatio
measuyre their similarity or

dissimilarity and is given using § | ceustomer .
some well-known metrics (e.%, £ o4 C N
Euclidean, Cosine or Jaccard).

* The best confi%uraﬂ.on is frying to
8p}proxmo’re the ongmol
IS

distances between data points ~company " point
iNn such a way as to minimize @ .

“stress” function (re_.g. metric, T e pefple
Kruskal's non-meftric or Sammon " -
mopplng me'l'hod) problem

« |f the target dimensionis 1, 2 or 3,
we can visualize the resulting
scaled-down space.

« Data clustering could be used
for chart colouring.
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Ef?ec’riveness

Clustering 1 using
Jaccard measures

2% Hierarchical Cluster Analysis of Words
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CLUSTER ANALYSIS

Clustering 2 using
Cosine measures

Data clustering can be used
very effectively to:

« reduce data dimensionality,
and

understand relationships
between terms and/or
documents

There are many different
approaches to creating term
(or document) clusters, which
result in hierarchical or flat
group structures.

The advantage of hierarchical
clusters is that they provide @
navigable visual structure of
the subject domain.

The disadvantage of all
clustering methods is that they
are sensitive to clustering
parameters, such as the
meftric in use or the target
number of clusters.




When a matrix of term-to-term (or document)

/ﬁ‘

GEPHI VISUALISATION

question

measures have been calculated it is possible
to use it within a specialized data visualization

software, such as Gephi.

Gephi provides functionality to apply
multiple layouts to networks of
nodes inter-linked with edges.

Nodes and edges can be displayed
with numerous visual attributes.
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The following charts have been produced
by applying a Circular (left) and ForceAtlas
(above) layouts. Each layout provides a set

of parameters to alter the chart
construction and its appearance.
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ANSWER & REFLECTION

How can data mining and data visualization
assist analysis of interview transcriptse

« Analysis of interview transcripfts relies primarily on data mining
techniqgues, such as:

« text parsing,

 identification of terms of interests,

« vector representation of documents, and

« analysis of relationships between documents and terms.

 Visualisation of results is based on various mathematical
methods of dimensionality reduction.

* |t assists understanding of vast amount of text data in
succinct form.

« Howeyver, it is important to be aware that visualization
simplifies text data and in the processes may omit or even
falsify some data.



T Glston
S— QUESTION

How can data mining and data visualization
assist analysis of text fields stored in @
database of structured records?

RapidMiner Studio
SAS Enterprise Miner
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CASE 1:

WIKILEAKS AFGHAN WARS

* On 25th July 2010 WikiLeaks Report key: 1BFF-4AEC-B463-0A495FDATSDY
Date: Jan 1, 4 AN
Type: Frie
Category:
Tracking numb
Title: CACHE F
Sumnﬂry USS

released over 91,000 reports
called the Afghan War Diary,
covering the war in Afghanistan
from 2004 to 2010

The reported data describes US
military actions, intelligence
information, meetings with
political figures, and other details

We will use a subset of these
documents (75,000) to predict
likelihood of civilian casualties
from events' textual description,
whether completed and reported
or just planned

Wikileaks documents are in the

open data domain. They have

been redacted and conftain no
sensifive information

The first step in this endeavour is
to process textual descriptions in
each of the Wikileaks records and
understand what the body of all
documents describe.

Reglon RC EAST
Attack on: FRIEND
Complex attack: FALSE
Reporting u O
Unit name: OTHER
Type of unit: Coalition
Friendly WIA: 0
Friendly KIA: 0

Host nation WIA: 0
Host nation KIA: 0
Civilian WIA: 0
Civilian KIA: 0
Enemy WIA: 0
Enemy KIA: 0

Longitude: 7
Originator gro J
Updated by group: L
Affiliation: FRIEMD

D coler: BLUE
Classification: SECRET
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DOMAIN EXPLORATION -
RapidMiner has some great tools for ASS OC |AT| O N R U I_ES

text analysis. However, it has no tools for
text visualization.

U} //Local Repository/Wikileaks/Wikileaks Afghan Wars Assoc Rules V2 — RapidMiner Studio Community 6.5.001 @ Goblin-Cave

Instead we will use association rules
(commonly used in Market Basket Analysis) i oERS > Q- X o -
TO id e n Tify C O_O CC U rri n g Te rmS O n d Z Rasu\tO\;ama;\rmwmm:;;w::::nmemsets (FF'VG\DNV\;m) Pr:;js.ﬁ\::nclannnRu\es (Creaéenizin:llﬂa:nn Rules) Supﬂf}::;g:ﬁatatpsgi:t»\Gtt!;u(es:i)) o

generate associations between these

site hazard, found 0.056 0300 0883 -0319 0031 2245 1238
site explos, hazard, found 0.056 0300 0889 -0319 0031 2245 1238
enemi patrol updat 0.078  0.301 08356 -0.442 0026 1.494 1142

terms. We will visualize these associations o

1
2
3
4
. . . . patrol 5 retum direct, engag 0.056 0302 0891 -0.315 0036 2760 1.276
TO g lellalal=\Y d omain insi g h TS '”:L::dm 6 explos hazard, casuall 0085 0302 0847 -0.477 0061 3550 1311
. ! 7 updat enemi, engag 0.061 0302 0883 -0.342 0033 2200 1.236

Sla[:‘?am 8 direct casualti 0.067 0303 0874 -0.375 0.019 1.390 1.122

Description engas 9 clear found, site 0.056 0303 0892 -0.311 0040 3.627 1315
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RM Examples Citedls This operator generates a set of
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Topics: planning
with district officials
yellow),
preparation of the
area (blue),
engagement with
the enemy (red),
clearing explosives
green), dealing
with casualties

purple).
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WORKERS COMPENS

» This case aims at predicting the « Part of the da
possibility of a legal case to recover of it is in text,

money (subrogation) from negligent
employers when workers suffered injury

at work

« A data source of previous workers
compensation claims have been

provided

Obs # | Claim Number

given for scori

r Notes Ei:]dy Part | Nature of Injury of Injury | Vehicle Flag...| Subrogation. . |Fraud Flag

ehic
pped on concrete floor due to unknown q..

bender felt twinge in arm g r ain ontact with Obj...

0 ;Joumi plate at work and has mid back... Back r Lifting

N 1uluple
Finge

abr 1on

CASE 2:
ATION CLAIMS

ta is structured and part

i.e. unstructured form

Both types of data need to be used
when creating a predictive model

« A file of new claims has also been

ng

0
0
0
1
0
0
1
1
0
1
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
0
0
0
1
0
1
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Sample records from the Workers

Compensation Claims
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Cluster Proximities

Descriptive Terms

Dimension 2

1+vehicle +hand back lifting +strain

1walking unloading +forklift neck truck

2lifting +pain +hand +machine +door

2+vehicle accident truck car +ankle

3fell +back back +strain lifting ﬁ | ﬁ Tl N

Sfell +back back +strain lifting

Tlifting +machine +arm +ladder +pain

T+knee +foot +shoulder +hand fell -
8+machine back +ladder +finger +door
8+arm +eye +leg felt forearm
13+arm +leq head accident auto -

4fell +back back +strain lifting
13+e

Dimension 1

e We can now explore text clusters, analyse term
' associations, inspect text topics, evaluate a
model based on structured and text data, and
use it in prediction.

10: +machine 17: walking

B: +vehicle

[+ experience
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ANSWER & REFLECTION

How can data mining and data visualization
assist analysis of text fields stored in @
database of structured records?

. Anolyésis of text accompanying structured information (stored in
databases) aims primarily to:

« convert text intfo variables derived from terms,

« create models using a combination of all variables,
 visualise these models with a view to understand data, and
« use the created models for other analytic tasks.

« As textis a very rich medium, models created with text often
perform better than those relying on structured data only.

« Visualisation of textual data is used commonly to improve the
creation of new text-based variables.

 Visualization of data that incorporates text and structured
information assist improvement of predictive models, as well as,
understanding of the subject domain and prediction results.



FUTURE TRENDS

Text streaming and flowing (e.g. Twitter)

by Shixia Liv and students, Tsinghua University Information diffusion and propagation
by Siming Chen et al, Peking University

Documents Compass
Topic panoramas by Florian Heimerl, Markus John, Qi Han and Steffen Koch
by Shixia Liv and students, Tsinghua University Universitat Stultgart




The main purpose of text visualisation is to make sense
of the domain of discourse the text represents.

The first tasks in the process of text visualization is in its
parsing and representation in a structured form - usually
as a space of term vectors.

The main problem of this representation is in its very
high dimensﬁ?nqliiy (often over 20,000).

A
To make this information useful for both visualization
and analytics various dimension reduction techniques
are applied.

For the purpose of text visualization the most commonly
used methods include correspondence analysis, multi-
dimensional scaling, co-occurrence analysis, as well
as, cluster analysis.

There are many algorithmic methods of data ‘
visualization, such as force-directed graphs, which are
based on iterative optimization techniques.

Data visualization requires a very significant effort in
understanding and representing data, developing
analytic solutions and then creating a visual form.

There are many deep theoretical questions related to
data (including text) visualization, some relarted to data
representation, some to mathematical methods, others
in the area of human cognition, which need to be
pursued.

SUMMARY & REFLECTION

Recent projects

Teaching Data Analytics (OLT)
Sensemaking and Legitimisation (ICAA)
Larger study of IVA sensemaking

Study comparing 2D and 3D IVA
Collaborative analytics

Current and future work

Virtual reality analytics
Dynamic data and text
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. APPENDIX: l

INTERACTIVE VISUAL ANALYTICS

IVA serves Analyst’s Mind
different (KH Coder)

WikiLeaks Files

Visual
(RapidMiner)

Analyst
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dlffgrenf Vic Accidents

audiences (Unity 3D)
Shared Data Problem

Mental States Analyst Analyst

Shared
Understanding

Problem
Domain

Metaphor

Musical Genres
(Gephi)

General

Domain Movie Tickets

(WWT/Lasyerscape)

Persistence of Music
(JavaScript/D3)



