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Abstract

Training of Quantum Neural Networks can be affected by barren plateaus - flat
areas in the landscape of the cost function, which impede the model optimisation.
While there exist methods of dealing with barren plateaus, they could reduce
the model’s effective dimension - the measure of its capacity to learn. This pa-
per therefore reports an investigation of four barren plateaus countermeasures,
i.e. restricting the model’s circuit depth and relying on the local cost function;
layer-by-layer circuit pre-training; relying on the circuit block structure to sup-
port its initialisation; as well as, model creation without any constraints. Several
experiments were conducted to analyse the impact of each countermeasure on the
model training, its subsequent ability to generalise and its effective dimension.
The results reveal which of the approaches enhances or impedes the quantum
model’s capacity to learn, which gives more predictable learning outcomes, and
which is more sensitive to training data. Finally, the paper provides some rec-
ommendations on how to utilise the effective dimension measurements to assist
quantum model development.
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1 Introduction

Quantum Neural Network (QNN) is a machine learning model that takes advantage
of the quantum theory to represent and implement the selected properties of classical
artificial neural networks, which could then be deployed for execution on quantum
devices [1]. Most commonly, QNN employs a parameterised quantum circuit, to define
the structure of a neural network, and a hybrid quantum-classical approach, known as
Variational Quantum Algorithms (VQAs), to optimise its parameters [2, ch5]. While
quantum techniques can be used to implement different types of neural networks,
Multi-Layer Perceptron (MLP) is the closest classical analogue of QNNs, including
their layered architecture, as well as, gradient-based and stochastic methods of their
optimisation [3, sect 2.5, 5, 7.1].

As VQA is the mainstream method for designing QNNs, QNN inevitably inherits
some of the VQA shortcomings, e.g. training large QNNs may suffer from barren
plateaus (BP) [4, 5], which are large flat areas in the cost landscape of the VQA
parameter space, impeding effective optimisation of the QNN circuit. The problem is
similar to the vanishing gradient phenomenon in classical deep neural networks [6].

This research aims to survey and compare a number of well-known countermeasures
to BP phenomena in VQA-based QNN development. In particular, the project focuses
on the effectiveness of QNNs treated with those countermeasures, and specifically
their capacity to learn, which can be measured as the model effective dimension [7, 8],
representing a class of functions fitting and generalising training data.

2 Barren Plateaus in QNN Training

2.1 Quantum Neural Networks

When developing a QNN model, we aim to implement a class of functions fθ(x) → y
as a variational quantum circuit U(x, θ), parameterised with θ and taking input data
x. When the circuit is executed repeatedly, assuming the initial quantum state |0⟩,
it could then generate expectation values of its measurements M, which can be
interpreted as output y [2, ch5].

In a typical VQA process of QNN development, the parameters θ are being opti-
mised classically, so that the circuit U(x, θ) could best approximate a specific function
fθ(x) → y defined by the sample of input-output pairs (xt, yt), which are given as
the model training data. The process is assisted by the cost function measuring the
distance between the calculated results and their expected values, and guided by an
optimiser able to iteratively vary the parameters θ to gradually reduce the cost.

The QNN considered in this paper is a variational circuit of three blocks (Figure
1), which are responsible for its input, processing and output [9]:

• feature map: a circuit S(x) encoding a training example x of classical data
into the circuit quantum states;

• ansatz : a layered circuit W (θ) tasked with the processing of quantum
information, the accuracy of which is determined by its parameters θ; and,

• measurement : a circuit measuring the final quantum state, representing the
quantum observable M.
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Figure 1: QNN architecture, which includes three blocks: a feature map S(x), ansatz
W (θ) of L layers Wl(θl) parameterised by θ = {θl}, and the measurement block M.

The variational quantum circuit can thus be formulated as consisting of a feature
map and an ansatz:

U(x, θ) =W (θ)S(x) , (1)

and QNN defined as measurement of the state |ψ(x, θ)⟩ prepared by U(x, θ)|0⟩, or
an equivalent projective measurement in the computational basis of this variational
circuit, hence estimating the function fθ(x) [2, ch5]:

fθ(x) = ⟨ψ(x, θ)|M|ψ(x, θ)⟩ , (2)

fθ(x) = Tr
[
MU(x, θ)†|0⟩⟨0|U(x, θ)

]
. (3)

Note that the feature map is constructed for the specific example of training data -
this means that QNN is a dynamic learning model, of which parameter values, and
potentially its structure, may vary during training. Also, the strategies selected for
data encoding by the feature map, quantum information processing by the ansatz, as
well as decoding of the resulting quantum states, must all be consistent.

The ansatz W (θ) is an arbitrary parameterised circuit, however, most commonly
it is expressed as a product of L layers:

W (θ) =W (θ1, · · · , θL) =
L∏

l=1

Wl(θl) , (4)

with the parameterised operator Wl(θl) defined as:

Wl(θl) = e−iθlHlVl , (5)

where the unitary Vl and hermitian Hl operators are unparameterised, and θl being
the l-th element of the set of parameters θ = {θl}. Parameters θl define properties
of individual ansatz operator gates (such as qubit state rotations), with their values
being manipulated by the optimiser to minimise the overall cost function [9].

The cost function receives trainable parameters θ and training data {(xt, yt)}. It
uses a function gx,y(m) calculating distances between the estimates of the fθ(xt), as
obtained from the circuit U(x, θ), and the expected values yt. The total cost can thus
be expressed as a sum of all distances calculated for the training examples.

3



C(θ) =
∑
(x,y)

gx,y
(
Tr

[
MU(x, θ)†|0⟩⟨0|U(x, θ)

])
. (6)

The cost function can be calculated by relying on either a quantum or classical
algorithm, however, the latter is the most common and most convenient way of its
calculation in the VQA context.

The optimiser is the classical component of the VQA hybrid method. The VQA
process is iterative and is commonly controlled by the optimiser itself. It starts with a
given training data and an initial set of parameter values. Parameter initialisation may
involve a random selection of values, or it may be a separate process, which could be
complex and rely on an in-depth knowledge of the problem domain (such as molecular
structures in chemistry).

At each optimiser iteration, VQA instantiates the variational quantum circuit
U(x, θ) by encoding input xt of the selected training example (xt, yt) into the circuit’s
feature map S(xt), and setting the current values of trainable parameters θt for the
ansatz W (θt). This results in a static, unparameterised circuit U(xt, θt), which can
be executed on a quantum machine or its simulator. By running such a circuit multi-
ple times, the optimiser generates a distribution of possible observable results, which
can then be used to estimate the cost function value C(θt). At each iteration, the
estimated cost is relied upon by the optimiser to improve the circuit parameter val-
ues. By changing the circuit parameters, the optimiser explores the cost landscape in
search of the global minimum, while avoiding any local minima, and thus progressing
towards the optimum values for the circuit parameters. This process is repeated until
an optimum set of parameter values is found (within an acceptable tolerance) or the
process is aborted due to its non-convergence [9].

The optimisation strategy has a significant impact on VQA’s accuracy and train-
ing performance. While there exist many different classes of optimisation algorithms
[10], gradient optimisation is one of the most commonly used. Analysis of gradient is
especially important in detecting the presence of barren plateaus, where gradients are
near zero but away from the optimum, and so gradient optimisers were of special in-
terest to this project. The method of gradient descent relies on moving the parameters
progressively, at some learning rate, in the direction of the steepest slope within the
cost landscape, which should lead the optimiser towards the minimum cost, and thus
the problem solution. To avoid converging into a local minimum, stochastic gradient
descent (SGD) is recommended [11]. A class of adaptive Adam (Adaptive Moment Es-
timation) stochastic optimisers use both gradients and second momentum information,
which improves the speed of algorithm convergence [12].

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [13], a well perform-
ing variant of Adam algorithm, was adopted in this project. Nadam replaces a standard
momentum calculation with Nesterov-accelerated gradient (NAG) estimation, to fur-
ther increase training performance, even with gradients of high curvature and some
noise.

4



2.2 Barren Plateaus and Their Mitigation Methods

There exist several well-researched methods of dealing with the emergence of BPs in
quantum model development. They can all be grouped into four distinct focus areas,
which are explained as follows.

Focus on ansatz size
An approach which aims to control a circuit depth and the number of qubits in

the ansatz variational structure, and hence the number of trainable parameters.
McClean et al. [4] conducted a study of large QNNs with the commonly used cost

functions and randomly initialised parameters. Subsequently, they found out that in-
creasing the model size (as defined by the number of its circuit parameters, layers and
qubits) in the presence of randomly initialised circuit parameters, may lead to statis-
tically independent circuit components generating similar outputs despite of differing
parameter values (2-design). This phenomenon was found to be responsible for the
flattening of the cost landscape, BP emergence, and hence, ineffective model training.

They also revealed that in randomly initialised variational circuits of L layers, the
gradient growth rate is O(n1/L), which implies that for large L cost gradients are
mostly constant - in this case approximating zero - for the great majority of QNN
parameters θ, thus creating large BPs. They noted that variance of the cost gradient
shrinks exponentially with the number of qubits n (and the circuit size in general).

The problem is further amplified when training QNNs on NISQ machines, where
it may not be possible to distinguish small gradients from hardware noise [14] or when
noise alone is able to induce BPs in VQA-based circuit training [15]. This is a serious
issue for the gradient-based optimisation of QNNs in the presence of a near-flat cost
landscape.

It is hence commonly recommended to develop a shallow QNN ansatz [16]. An
alternative approach is to relax the circuit depth but instead interweave the process
of ansatz construction and optimisation. In this way, at each optimisation step it is
possible to deal with a shallow ansatz sub-circuit and a small number of trainable
parameters [14, 17], thus avoiding BP formation. We expect the latter method, which
manipulates more parameters over the entire training process, to facilitate learning
of more complex functions.

Focus on observable and cost
An approach which targets the selection of circuit observables responsible for

measurements used by the cost function.
It is worth noting that BP could emerge not only in large QNNs but also in shallow

circuits, but with an inadequately chosen observable and a cost function [16] (refer
to Figure 2). For example, circuit optimisation that relies on a global cost function,
of which observable aims to measure the state of all qubits and is thus assessing the
circuit state in exponentially large Hilbert space, is more prone to the emergence of
barren plateaus. Whereas, the use of a local cost function, of which observable assesses
the states of the selected few qubits, reduces the complexity of the state space, and is
less likely to lead to BP development.
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Figure 2: Configuration of measurements in different classes of cost functions

Experimenting with a local cost function and different ansatz architectures could
lead to a better control over gradients in training, with the potential for BP avoidance
[18]. For example, Cerezo et al. [16] recommended using the local cost with a depth-
limited ansatz to ensure non-zero variance of gradient in circuits training.

Having said this, circuit training with a global cost function tends to produce more
robust quantum models. In such models, as compared with models trained with a lo-
cal cost function, all parameters participate equally in training, resulting in parameter
changes distributed across the entire circuit. However, this is subject to the successful
avoidance of BPs in the process. Therefore, circuit training can be further improved
by using a combination of local and global cost functions, the former to avoid BPs
and the latter to gain the model quality. This can be accomplished by gradually tun-
ing the circuit and its observable in a training cycle with the series of cost functions
of increasing locality, i.e. gradually involving more qubits in measurement [19].

Focus on ansatz parameters initialisation
An approach which seeks to refine the starting point for the optimisation of circuit

parameters.
For the vast majority of QNN designs, random parameter initialisation is a default

strategy, which as mentioned before in some circumstances may lead to sub-optimal
results [4]. Therefore some innovative circuit initialisation methods have been pro-
posed, to pre-train the ansatz while reducing the depth of trained sub-circuits and
the scope of random parameter initialisation, if any. Grant et al. [17], for example,
suggested to construct an ansatz of shallow circuit blocks, each with two parts - one
with random parameter values and another being its inverse, so that each block im-
plements an identity operation (see Figure 3). Thus obtained parameter values serve
as the initial point for the second phase of the circuit training. This approach allows
avoiding the BP areas in the initial steps of the circuit optimisation.

Another method was proposed by Skolik et al. [14] who also favoured a two-phased
training algorithm. In the first phase of layerwise learning, the process starts by train-
ing a single layer ansatz with all its parameters initialised to zero. Once optimised,
the parameters of the trained layer are frozen, and the ansatz extended with a new
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q0 : RY (5.7) • RY (6.0) RY (−6.0) • RY (−5.7)

q1 : RY (1.2) • RY (0.1) RY (−0.1) • RY (−1.2)

q2 : RY (6.2) • RY (1.4) • RY (4.5) RY (−4.5) • RY (−1.4) • RY (−6.2)

q3 : RY (4.5) RY (5.4) • RY (0.0) RY (0.0) • RY (−5.4) RY (−4.5)

Figure 3: A sample identity block, featuring exactly 20 parameters over 4 qubits - the
first part consisting of 10 rotational gates with random parameters and the second
part the inverse of the first part.

layer of untrained parameters, again initialised to zero and ready for the next step of
optimisation. At each step, the algorithm deals with a small extension of the circuit
and a small number of untrained parameters, thus reducing the likelihood of develop-
ing BPs in the optimisation process. In the second phase, the algorithm retrains the
entire multi-layer ansatz, initialised with the previously found non-random parameter
values, until convergence. The approach is claimed to minimise the chance of entering
BPs.

The idea behind these algorithms is to set the initial ansatz parameters away from
BPs so that the optimiser could avoid zero gradients in the early stages of the circuit
training. However, these methods cannot guarantee the cost function to run into BPs
in further optimisation steps.

Focus on the current practice
A commonly practised approach which accepts the creation of ansatze of arbitrary

depth, with random parameter initialisation, and an observable to support a global
cost function.

We have explored four distinct focus areas of dealing with BPs. However, any
practical BP mitigation strategy needs to address all four foci. Therefore, such a
strategy should provide details of the circuit construction or modification. It ought to
recommend ways of measuring such a circuit and suggest a suitable cost function. A
method of initialising the circuit parameters should also be known in advance. Finally,
to warrant our investigation, a BP countermeasure needs to be well-known in the
quantum computing community.

We, thus, identified three highly-cited academic publications, each describing some
pro-active BP mitigation method [14, 16, 17], and each emphasising one or two of the
previously discussed focus areas (see Table 1). This way, we have proposed method #0
as commonly practised, yet passive approach, with no specific BP mitigation strategy
and unpredictable results. A pro-active method #1 aimed to eliminate BPs by short-
ening the QNN ansatz and using a local cost function. An equally purposeful methods
#2 and #3 focused on the initialisation of ansatz parameters to avoid BP areas, by
relying on layerwise learning or identity blocks, respectively. We designed the last two
methods to utilise deep circuits and global cost functions, which was in contrast with
method #1, and to focus them on their areas of strength.

A preliminary investigation of the four selected methods was carried out to
determine the predisposition of their models to forming BPs in training.
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Method /
Aspect

#0:
Generic -
No BP
strategy

#1:
Shallow
circuit
with
Local cost

#2:
Layerwise
learning

#3:
Identity
blocks

Ansatz depth Any Shallow Any Any
Cost Function Global Local Global Global
Initial Params Randomised Randomised Restricted Restricted
Reported BP Effect Unpredictable Eliminated

[16]
Avoided
[14]

Avoided
[17]

Table 1: BP mitigation strategies investigated in this project

This was achieved by studying geometry of QNN models constructed in accordance
with the methods’ recommendations and repeated random parameterisation to define
their gradient space. Analysis of variance in the gradient space reveals the potential
presence of BPs in the landscape of the cost functions, with small variance indicating
the possibility of BPs and large variance suggesting their likely absence. By increasing
the complexity of the investigated models, e.g. by changing the ansatz depth or the
number of qubits, which are known to promote the emergence of BPs, it is possible to
determine the model resilience to BP formation.

The preliminary analysis of randomly generated gradients for the four BP miti-
gation strategies (see Figure 4), indicated that method #1 (shallow circuits with the
local cost function) retains high variance across increasingly more complex ansatze,
and hence, has the best chance of avoiding development of BPs in QNN training.
While the remaining, although more sophisticated, methods #0, #2 and #3 featured
significant gradient decay with the number of qubits used in their ansatze.

And yet, in many published cases, similarly to the above-mentioned preliminary
investigation of the four BP mitigation strategies, the methods are selected without
any consideration of training data, which restricts the range of allowable parameter
values, and thus creates a gradient sub-space, with its own unique features, which
could enhance or impede the strategy of choice.

Therefore, it is important to examine BP mitigation strategies in QNN training,
to determine their suitability for the model architecture (as defined by its ansatz,
observable and cost function) and training data, as well as the impact of the selected
strategy on the QNN capacity to learn.

2.3 Measurement of QNN Learning Capacity

There are many conceptualisations of the neural network “capacity”. For example,
the concept of “storage capacity”, as measured in bits and bytes of information, dates
back to the early investigations of neural networks’ associative memory [20, 21]. Other
studies considered the network potential for storing input-output patterns [22, 23].
With the advent of larger and more complex neural networks, the focus shifted to
practical issues of estimating the network’s requisite complexity, measured as the
number of layers of densely interconnected “neurons”, necessary to approximate a
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Figure 4: Analysis of gradient for the four BP mitigation strategies (y log scale)

given function (as implied by training data). In a similar vein, others focused on
removing unnecessary network parameters without adversely affecting its information
contents [24].

Vapnik, Levin and LeCun [25, 26] defined the notion of “VC-dimension” (from
Vapnik-Chervonenkis) which is an “empirical measurement of the maximal difference
between the error rates on two separate data sets of varying sizes”. Such a measure
could be interpreted as the set of functions the neural network could represent depend-
ing on the size of the training set and the error rate tolerance. In a sense, VC-dimension
describes not the network storage or its complexity, but rather a dynamic notion of its
“capacity to learn”. Baum and Haussler further extended Vapnik and Chervonenkis’
VC-dimension to study the network ability to learn and generalise from its training
data set [27]. However, the initial formulation of the VC-dimension, which required
to “exactly” quantify the lower and upper bounds of measurements, was difficult to
calculate for many classes of functions. Hence the authors later replaced their notion
of “dimension” with the concept “effective VC-dimension”, the new measure of neural
network capacity, which took into account not only the size of the training data and
the expected error rates, but also the probability distribution of its measurements [25].

A significantly different take on the network capacity to learn was given by
Karakida et al. [28] who adopted the “Fisher Information Matrix” (FIM) as a sta-
tistical tool linking the neural network learning with the shape of the cost gradient
emerging in the network’s optimisation. In a similar way, Liang et al. [29] proposed a
Fisher-Rao metric as a measure of generalisation and complexity of neural nets.

The notion of model capacity naturally translates to quantum models of neural
networks, e.g. Lewenstein et al. [30] are concerned with QNN storage capacity, which
is measured by the number of linearily independent pure states the network can rep-
resent, and Abbas et al. [7, 8] propose QNN’s “effective dimension”, which combines
“effective VC dimension” with “Fisher Information Matrix” to estimate the number
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of functions that a quantum model can learn. Larocca et al [31] also explored the
concept of QNN effective quantum dimension and observed that the model learning
capacity, which can be enlarged by increasing the number of its parameters, is nev-
ertheless capped by the model’s effective dimension. As noted by some scholars [32],
a quantum model effective dimension expresses a complex relationship between ge-
ometry of the model parameter space, its expressive power, training ability, degree of
parameter redundancy and the effectiveness of its initialisation strategy.

To study the impact of BP strategies on QNN learning, we adopted the Abbas et
al. [7, 8] concept of effective dimension as the most versatile measure of the quantum
model’s capacity to learn.

2.3.1 Fisher Information

The key tool of the adopted measure of a QNN learning capacity - the effective quan-
tum dimension - relies on the calculation of the Fisher Information Matrix (FIM). In
general, Fisher information [33] plays an important role in analysing statistical mod-
els. Furthermore, applications of Fisher information include construction of confidence
intervals and hypothesis tests, definition of priors for model parameters and measuring
model complexity.

A neural network can be considered as a probabilistic model for the conditional
distribution p(x, y; θ) = p(y|x; θ)p(x) that receives the parameters θ ∈ Θ ⊆ Rd to
generalise the relationship between data pairs (x, y). Moreover, p(x) is the input dis-
tribution over the data, and p(y|x; θ) is the relationship between the input and output
for a specific parameter θ in the parameter space Θ. The Fisher information can then
be presented in the matrix form F (θ) ∈ Rd×d as follows [7, 34]:

F (θ) = E(x,y)∼p [∇θ log p(x, y; θ)∇θ log p(x, y; θ)
⊺] (7)

which is often approximated (with caution [34]) with empirical Fisher matrix:

F̃k(θ) =
1

k

k∑
j=1

∇θ log p(xj , yj ; θ)∇θ log p(xj , yj ; θ)
⊺ (8)

In this formulation and its extensions (such as Fisher-Rao norm [29]), Fisher
information matrix can be used to explore the model geometry by calculating (or ap-
proximating by sampling) its natural gradient, which subsequently can also be used
by the stochastic gradient-based neural network optimiser [35]. As Fisher information
of classical statistics can be readily adopted to matrix formalism of quantum theory
[36], it also finds applications in assessing the complexity of quantum models, and
QNNs in particular [7].

2.3.2 Effective Dimension

There are two distinct approaches to measuring the model’s effective quantum di-
mension. The first, called global effective dimension (GED) [7], is a measure of the
model complexity based on its geometry defined by its entire parameter space (hence
the name ‘global’), regardless of data and algorithm used in the model training. The
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benefit of this approach is that global effective dimension can be calculated from the
model structure before its training, while also estimating the bounds on the model
generalisation error. The second approach, known as local effective dimension (LED)
[8], takes into consideration distribution of data and the learning algorithm, which
create a geometrical sub-space of the model (hence the name ‘local’) that cannot be
derived from the model structure alone. The LED benefit is that the measure is more
sensitive to the dynamic features of the model, which only emerge during its training,
and hence can be obtained at each optimisation step. Its main weakness, however, is
that it is more costly to calculate.

Abbas et al. [7, 8, 37] calculate GED using Fisher information matrix as its metric.
For a model MΘ = {p(·, ·, θ) : θ ∈ Θ}, a d-dimensional parameter space Θ ⊂ Rd,
n ∈ N and n > 1 data observations, and a stabilising parameter γ ∈ (0, 1] ensuring
that the formulas are meaningful for sufficiently large n→ ∞ (for n < 20, the formula
may produce incorrect results), the model GED is estimated to be:

dγ,n(MΘ) =

2 log

(
1
VΘ

∫
Θ

√
det

(
idd +

γn
2π log(n) F̂ (θ)

)
dθ

)
log

(
γn

2π logn

) (9)

Where F̂ (θ) ∈ Rd×d is the normalised Fisher information matrix:

F̂i,j(θ) = d
VΘ∫

Θ
tr(F (θ))dθ

Fi,j(θ), (10)

and VΘ ∈ R+ is the volume of the entire parameter space:

VΘ =

∫
Θ

dθ (11)

Note that the size of data observations n is used to only define the granularity
(or “resolution”) of the model space, and does not relate to any specific data set or
the model training [7]. However, when optimising QNN parameters with VQA, the
optimiser actively explores the parameter values, with the aim of reducing the cost of
results obtained from application of the model circuit to sample data. In this way, the
optimisation process constrains and reduces the parameter space of the model, alters
the cost landscape, and hence changes the QNN learning capacity as well. And yet,
these processes are not captured in the GED calculation.

In a later study, Abbas et al. introduced local effective dimension [8], which is a
measure of learning effectiveness correlated with data and the training algorithm, thus
addressing the above issue.

Throughout the QNN model training, at each step its LED can be derived from
the Fisher Information Matrix calculated around the evolving parameter values θ⋆ ∈
Θ ⊂ Rd, but within a small d-dimensional Euclidean ball of some radius ϵ > 0:

Bϵ(θ
⋆) = {θ ∈ Θ : ||θ − θ⋆|| ≤ ϵ} (12)
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with the volume of the Euclidean d-ball Vϵ ∈ R+

Vϵ =

∫
Bϵ(θ⋆)

dθ =
πd/2ϵd

Γ(d/2 + 1)
(13)

where Γ is Euler’s Gamma function.
The LED measurement can be calculated around the reduced parameter space

θ⋆ ∈ Θ with γ ∈ ( 2π logn
n , 1], and ϵ > 1√

n
, and thus defined as follows.

dγ,n(MBϵ(θ⋆)) =

2 log

(
1
Vϵ

∫
Bϵ(θ⋆)

√
det

(
idd +

γn
2π log(n) F̂ (θ)

)
dθ

)
log

(
γn

2π logn

) (14)

where matrix F̂ (θ) is the normalised Fisher information matrix F (θ) ∈ Rd×d:

F̂i,j(θ) = d
Vϵ∫

Bϵ(θ⋆)
tr(F (θ))dθ

Fi,j(θ), (15)

In this way, LED can provide insights into learning effectiveness over the process
of model training. Importantly, it has also been shown that LED correlates with the
model generalisation errors [8].

The measure can be interpreted as the effectiveness of the model parameter utilisa-
tion (in a scale from zero to the number of parameters), which is commonly normalised
(by the number of parameters) to determine the utilisation of each parameter in the
model (in a scale of 0 to 1, where 0 and 1 represent extremely poor and full parameter
utilisation, respectively).

In this investigation of barren plateaus in QNN, as LED is sensitive not only to
the model geometry (as defined by the QNN ansatz, its parameters and observable)
but also to the dynamic process of model training (influenced by the cost function,
the optimiser and data), it was therefore selected as the most suitable measurement
of QNN learning capacity in our experiments.

3 Methods

Effectiveness of the selected BP mitigation strategies was determined by analysing
their impact on training and testing of their respective QNN models and on their
effective dimension, regardless of the BP presence in training.

Two groups of experiments were conducted (see Figure 5), each associated with a
distinct data set, i.e. IRIS and MNIST. These two data sets were selected specifically
as other authors working in the area of BP mitigation and effective dimension used
them for their experimental work as well [7, 8]. The two data sets are fundamentally
different as IRIS describes unique characteristics of flowers and MNIST is a collection
of images of hand-written digits (each consisting of a grid of 28× 28 black and white
pixels). Both data sets were transformed into exactly the same structure for encoding
in a quantum circuit. After the transformation both had 4 features and supported a
binary classification task.
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Figure 5: The adopted research framework of data, model components, BP counter-
measures, measurements of training performance and learning capacity

A subset of IRIS data included (all) 100 records of 2 selected varieties of iris flowers,
i.e. ‘setosa’ and ‘versicolor’ (50 each, classified by values -1 and 1), and described by
their 4 characteristic features. A subset of MNIST data consisted of 500 randomly
selected images of digits 0 and 1 (250 each, classified by values -1 and 1), and described
by the 4 top principal components obtained from PCA analysis of the original MNIST
data set. Both data sets were split into a training (70%) and testing (30%) data
partition of balanced classes (-1 and 1).

In each group of experiments, four BP mitigation strategies (see Table 1) were
utilised to implement and test a QNN classifier in Qiskit [38]. Each of the QNN circuits
used in the experiments had 4 qubits, and consisted of three blocks representing a
ZZ-feature map [39], an ansatz and measurements (as per Figure 1).

What follows are implementation details of the QNN structures and their ansatze
for each of the four methods specified by their BP mitigation strategies (cf. Table 1).

Method #0 (Generic - No BP Strategy)
The goal of this QNN configuration was to create a performance benchmark

against which the specific BP mitigation strategies could be compared. A general-
purpose variational circuit was created to represent a multilayer perceptron. The
circuit included a randomly initialised RealAmplitudes Qiskit ansatz. The circuit’s
measurement block, monitored the state of all qubits, and hence was designed to
support a global cost function. The ansatz was designed for 4 qubits (as many as the
number of features in both data sets), it had 9 repetitions of 4 rotational parameter
blocks each (as well as included entanglement block), plus a default final parameter
block of 4 rotations, which resulted in 40 parameters.

Method #1 (Shallow Circuit with Local Cost)
This approach to QNN design aimed to reduce the circuit depth, as well as, its

state space by relying on the local cost function [16]. Therefore, the circuit training
block was represented by a short RealAmplitudes Qiskit ansatz with 8 parameters
only. The measurement block was designed to facilitate the local cost function, which
was achieved by monitoring the state of 2 out of 4 qubits.
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Method #2 (Layerwise Learning)
This strategy relied on the use of the ansatz identical to that used in Method

#0. However, its parameters were zero initialised in a layerwise fashion by following
the algorithm proposed by Skolik et al. [14] (as explained previously). The method
aimed to avoid training of deep circuit blocks and to eliminate random parameter
initialisation, both known to encourage formation of barren plateaus. The circuits
created by this methods featured 40 parameters.

Method #3 (Identity Blocks)
This BP mitigation strategy was proposed by Grant et al. [17] (as explained

previously). The method aimed to train short ansatz blocks and avoid both zero
initialisation, as well as, a completely random parameter initialisation. Hence, the
circuit was sub-divided into identity blocks. To this end, a custom multilayer Qiskit
ansatz was created (see example in Figure 3). The ansatz was limited to 2 identity
blocks of 20 rotation gates over 4 qubits, which resulted in a circuit of 40 parameters.

All experiments were scripted as Jupyter notebooks written in Python, featuring
Qiskit APIs with PyTorch optimisers, to support the creation of QNN classifiers.

For each BP mitigation method, its prescribed model was implemented as a Qiskit
EstimatorQNN. A Nadam optimiser was used with all models, using an L1 loss func-
tion (Mean Absolute Error cost). Ten instances of every EstimatorQNN were then
trained with both IRIS and MNIST data, and their circuits executed using a quantum
state vector simulator (i.e. simulation of a noise-free quantum machine).

Expectation values from each set of 10 runs were then analysed to obtain a fair
observation of the model behaviour, e.g. to obtain the average model performance,
account for the optimiser encountering local minima, occasional under- or over-fitting
data, etc. Training and testing performance of all models was recorded for further
processing.

The QNN models and their learning processes were subsequently evaluated based
on the records of their parameter values, accuracy scores on training and test data
partitions, as well as cost function values (as Mean Absolute Error). Eventually, the
models GED and LED were calculated (as given in Eqs. 9 and 14) for a sample of suffi-
ciently large number of data observations (as required n > 20, so n = 75 . . . 1000000).
Due to the wide range of observation data, the effective dimension was subsequently
plotted with the logarithmic x-scale (unless specified otherwise).

4 Results and Discussion

This section initially discusses GEDs characteristic of the QNN models prescribed
by the four BP mitigation strategies and their methods. Then it investigates model
training for each of the methods and their evolving LEDs.

Global Effective Dimension
The structure of the quantum circuits developed for each of the methods was

dictated by the data set features and their respective BP mitigation strategy.

14



(a) (b)

Figure 6: Global Effective Dimension (with log x-scale), which is identical for both
IRIS and MNIST: (6a) Not normalised. (6b) Normalised.

As explained above, the subsets of both IRIS and MNIST data were transformed
into identically structured data of 4 features and a binary label. Therefore, the QNNs
developed for training with either IRIS or MNIST data relied on circuits, consisting
of identical feature maps and ansatze. Their models were hence influenced only by the
methods prescribed by their BP mitigation strategy. Subsequently, as GED calculation
does not rely on data, Figure 6 depicting GED plots for circuits developed to support
the methods #0, #1, #2 and #3 is equally representative of experiments associated
with either IRIS or MNIST data sets.

The first aspect to note is that learning capacity, as measured with GED (nor-
malised or not), of methods #0, #2 and #3 are nearly identical for all numbers of
data observations n. This is not surprising, as methods #0 and #2 rely on the same
ansatze (see Figure 7b and 7d) and differ only in their initialisation, hence their to-
tal parameter space and geometry are also the same. The circuit of method #3 (see
Figure 7e) has exactly the same number of parameters as compared with those used
in methods #0 and #2 (40 each). However, it is different in its qubit entanglements
and the allocation of rotational parameters. Yet, these differences seemed to have little
impact on the calculation of Fisher Information Matrix.

The learning capacity of the ansatz used in method #1 is drastically different. Ini-
tially consider the global effective dimension without any normalisation (as depicted
in Figure 6a), which represents the learning capacity of the entire ansatz. It is evi-
dent that irrespective of the number of observation data, a shallow circuit of only 8
parameters, as associated with method #1 (see Figure 7c), has less than a third of
the capacity of deeper circuits of 40 parameters, as used by methods #0, #2 and #3.
The more circuit parameters, the more learning capacity.

At the same time, it seems that if we consider the effective use of each individ-
ual circuit parameter, as captured by normalised GED (see Figure 6b), to learn the
same data complexity method #1 utilises its parameters more extensively than the
remaining three methods.
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(a) (b) (c) (d) (e)

Figure 7: Circuit components: the common feature map (7a) and the specific ansatze
for - Method #0 (7b), Method #1 (7c), Method #2 (7d) and Method #3 (7e).
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Method IRIS
Accuracy

MNIST
Accuracy

#0 0.90667 0.97
#1 0.79667 0.85067
#2 0.9 0.956
#3 0.84667 0.94267

Table 2: Average peak accuracy for all
method’s instances in testing

Method IRIS
Variance

MNIST
Variance

#0 0.00177 0.00066
#1 0.00351 0.00289
#2 0.0 0.0
#3 0.0024 0.00087

Table 3: Accuracy variance in testing of all
method’s instances

Normalised effective dimension focuses on the effectiveness of an individual pa-
rameter in a circuit. Its analysis is, therefore, better suited comparison of different
QNN models, or the same model undergoing changes and improvements, irrespective
of the overall number of parameters in use, which can always be increased as needed.
For this reason, normalised GED and LED results are given more prominence in this
survey of BP mitigation methods, than the results without normalisation.

Model Training for LED Measurement
Measuring LED required training of QNN models. The LED measurements oc-

curred at regular intervals of each model evolution, during its optimisation process.
Subsequently, the recorded measurements were saved for later plotting and analysis.

All models trained with IRIS data required up to 150 iterations to converge (see
Figures 8a, 8c, 8e). The models trained with MNIST data required only 120 itera-
tions (see Figures 8b, 8d, 8f). Due to the small size of IRIS test data and Nadam’s
tendency to incur stochastic noise in some circumstances, its testing accuracy suf-
fered from a higher level of volatility (see Figures 9e vs 9f, dark lines) and a higher
inter-instance variance (same Figures, light area around dark lines), as compared with
MNIST testing.

When analysing the methods’ training and testing accuracy (cf Table 2 and
Figure 8), regardless of the data set used in training, the shallow ansatze with local
cost function performed worst in both. The test scores obtained for methods #0 and
method #2 were best. Method #3 score was marginally behind them. In the absence
of quantum indeterminacy (due to the use of state vector simulator), within each
method, variance in accuracy can be attributed to differences in the initialisation of
model instances (cf Table 3).

Local Effective Dimension
LED measurement depends on the number of data observations and the stage

of model optimisation, as denoted by the the number of iterations spent in model
training. Its shape is therefore three dimensional (see Figures 9a, 9b).
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(a) (b)

(c) (d)

(e) (f)

Figure 8: QNN training performance: (8a, 8c, 8e) IRIS data set. (8b, 8d, 8f) MNIST
data set. Note that smoothing was applied to all plots.
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To increase the chart readability, we represent it in two dimensions by plotting
only the selected few iterations (see Figures 9c, 9d). While the chart clarity is thus
improved, unfortunately, it loses some of its details.

As evident from Figure 9, and previously reported by Abbas et al [8], LED for
an individual QNN closely aligns with the model generalisation errors, which are here
represented in terms of test accuracy.

It is important to note that irrespective of the number of observation data n used in
calculating the local effective dimension, its measure grows with the model test scores
but then degrades when generalisation errors increase. For example, within method
#0, model instances 7 for IRIS and 3 for MNIST, iterations 40 and 60 coincide with
the peak test accuracy as well as with LED values (which are signified by the green
line in Figures 9c and 9d).

When analysing multiple model instances within each method of dealing with BPs
(see Figures 10a, 10c, 10e for IRIS and 10b, 10d, 10f for MNIST), we can observe three
important stages of the model evolution, which is reflected in their LED measurement,
i.e. immediately at their initialisation, at peak testing performance, and at the end of
training. First, it can be noted that the mean LED for all of the model instances at
their initialisation (before training) is a strong predictor of their LED at the subsequent
improvement. With a notable exception of method #2 training with IRIS data, the
models’ LED does not change at large numbers of data observations (for n > 10, 000)
after the best test performance was reached.

Interestingly, the methods’ LED seems to be less impacted by data used in models
training (such as drastically different IRIS and MNIST data sets), as it is influenced
by the model architecture and its initialisation strategy (especially for large n, as can
be observed in pairs of Figures 10a, 10b; Figures 10c, 10d; and Figures 10e, 10f).

In multi-instance training, where experiments were repeated 10 times for each
model type, the QNN initialisation strategy had a pronounced effect not only on the
model testing performance (as seen in Figure 8) but also its LED (see Figure 10). It
is clear that those methods, which allowed any part of their circuit to be randomly
initialised (even when counteracted with identity blocks), exhibited differing learning
behaviour of their instances and consequently their different LEDs, which can be
observed as variance bands around their average instance LED, especially in the early
stages of their training (see Figure 10a, 10b). The worst affected method was method
#1, which relied on the shallow ansatze, but which rapidly reduced the LED variance
once the models converged in training (see Figure 10c-10f). Except for method #3
which maintained high LED variance across it models’ evolution, the models of the
remaining methods converged and reduced their LED variance. Method #2, which
adopted parameter initialisation to zero, resulted in all identical instances of its models
(and no variance bands). The normalised LED for the method #3 is consistently
lowest of all models at all stages. However, it needs to be recalled that normalised LED
identifies an average effectiveness of a single model parameter. This means that LED
measures of methods #0, #2 and #3 are penalised by the large number of parameters
in use. If we were to compare their raw LEDs denoting the effectiveness of their entire
circuits, method #1 would fair worst, while the remaining three methods would display
the same relative effectiveness as they use exactly the same number of parameters.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Alignment of the local effective dimension with test scores (linear x-scale,
no smoothing): (9e, 9f) dark line denotes the selected instance, light area represents
the value range of all instances. (9a, 9c, 9e) IRIS data set. (9b, 9d, 9f) MNIST data set.
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Method #0 displayed excellent test accuracy (cf Table 2) and the highest LED in
all stages of model training with both IRIS and MNIST data (cf Figure 10). This is
in contrast with McClean et al [4] observation that random parameter initialisation
could lead to BP development and inferior model training. The results presented here,
however, indicate that random parameter initialisation should be included as a viable
option and tested, and discarded only when problems in model training emerge.

It is worth noting an important aberration in method #2 training. When models
were initialised in a layerwise fashion with IRIS data, as prescribed by method #2,
their LED continued to increase beyond the point of their best testing performance
(cf Figure 10e vs 10c). This goes against the previously discussed, and reported in the
literature [8], alignment between LED and generalisation errors. Such a behaviour,
however, was not detected in models trained with method #2 and MNIST data (cf
Figure 10f vs 10d). The likely explanation for this occurrence was high volatility in
QNN models training with IRIS, which resulted in early peak in test performance, its
subsequent drop, and then a repeated increase in test scores in later iterations of the
model optimisation (cf Figure 8e).

Finally, note that LED is defined for the “sufficiently large” numbers of data ob-
servations [8], such as n > 20, however, in practice n > 5000 is recommended [40].
Selection of very large n as a starting point in LED calculation results in monotoni-
cally increasing LED charts (cf Figures 9c, 9d, with linear x-scale). The notion of what
is “sufficiently large” is inadequately defined. As evident from Figure 10 (with log
x-scale), for small n LED calculations initially exhibit a downward trend. The LED
minimum is reached at different training stages for different methods and their model
instances, and only then the LED values assume their upward trend.

5 Conclusion

Many studies report effectiveness of different strategies to mitigate the problem of
emerging barren plateaus in QNN training [14, 16–18], which includes altering proper-
ties of the circuit ansatz (e.g. shallow or deep), application of different cost functions
(e.g. local or global), or reliance on various circuit initialisation strategies (e.g. random,
layerwise or identity preserving blocks).

In this work, we compared the methods associated with four distinct BP mitigation
strategies, i.e. #0 - common practice (deep ansatz, global cost and random parameter
initialisation), #1 - shallow ansatz and local cost function, #2 - utilising layerwise
ansatz intialisation, and #3 - reliance on identity blocks in circuit initialisation.

In all four cases, we developed and evaluated a number of QNN classifiers by
training them with two distinct data sets (IRIS and MNIST). We analysed their
training and test accuracy scores, as well as, their learning capacity by measuring their
global and local effective dimension. In our experiments, we did not investigate the
methods performance in the face of the actual barren plateaus, but rather whether
their application boosts or impedes the model optimisation, its performance and its
learning capacity.

We found that the commonly practised approach to QNN development was the
most beneficial to the model performance. Its models provided the best test scores
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Local effective dimension (with log x-scale): (10a, 10c, 10e) IRIS data set.
(10b, 10d, 10f) MNIST data set.
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and the highest local effective dimension. However, as observed in prior studies, deep-
circuit models with random parameter initialisation promote development of barren
plateaus. For this reason we recommend to use this approach with a great deal of
caution, in spite of the positive results obtained in this study.

The layerwise parameter initialisation produced the most effective model with high
testing accuracy and a consistently high local effective dimension. Although finding the
initial parameter values was computationally expensive, the benefits of the layerwise
approach were clearly visible in the subsequent model training and its quality.

In all tests, models initialised with identity blocks performed relatively well on ac-
curacy scores, and yet, the worst in their effective dimension measurements. This level
of performance could be attributed to the sensitivity of the method to the number
and depth of deployed identity blocks - as the method creators remarked [17]: each
block must be “sufficiently deep” and “sufficiently shallow” to meet the training cri-
teria. Perhaps our future work could investigate if the identity-block strategy could
be improved by combining it with layerwise training block-by-block.

QNN models with shallow circuits and local cost function converged earliest in
training and reduced their large initial variance quickest, as predicted by the prelimi-
nary analysis of the models’ gradient decay. Unfortunately, the model overall capacity
was insufficient to learn data of any significant complexity. The lesson learnt in this
case is that a QNN circuit must be as short as possible but not shorter. The second les-
son is that the analysis of gradient variance and decay alone is insufficient to properly
assess the model ability to deal effectively with barren plateaus and more importantly
with model learning.

While the shallow circuits were found to be poor learners, their local effect dimen-
sion was relatively high. In consequence, we found that local measures need to be used
with caution. This is especially when relying on their normalised values, which are
useful to compare models, evaluate the model variants and assess its future changes,
but which are unable determining the learning capacity of a QNN circuit as a whole,
the task which is better handled with raw measurements. It is also a reminder for
QNN developers that effective dimension should not be used as a sole measure of a
model training success.

Global effective dimension provides a good estimate of the model structural sup-
port for learning. However, it fails to distinguish between good and poor models in
their dynamic learning environment, which is influenced by the properties of train-
ing data, selection of measurement strategy and cost function, model initialisation, as
well as, the detailed approach to the model optimisation. The local effective dimension
measures are better equipped to do so.

Furthermore, local effective dimension at the time of the model initialisation is a
good predictor of its final capacity to learn. The moment of the model convergence, as
established by the peak in test scores, is also a good indicator of the final measurements
of learning capacity. However, care must be taken to observe any deviations from
this behaviour as this may be the sign of unreliable performance scores, e.g. due to
volatility in training.

In our experiments we found with some surprise that the local effective dimension
seems to be more influenced by the QNN architecture and its optimisation choices,
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rather than the nature of data used in the model training. However, as our investigation
utilised two data sets only, further work needs to be undertaken to conduct additional
tests.

In summary, this research investigated effectiveness of strategies countering the
emergence of barren plateaus in training quantum neural networks. We demonstrated
usefulness of measuring the effective dimension of quantum models to assess their
evolving learning capacity. We trust that our experimental approach to studying
quantum neural networks provided some valuable insights into development of such
models.
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