
April 1991 - Page 1

A Hypertext-Based Data Flow Diagram Editor:
Experience in HyperCard™ Prototyping

Mel Hatzis and Jacob L. Cybulski
Amdahl Australian Intelligent Tools Program

Department of Computer Science and Computer Engineering
La Trobe University, Bundoora, Vic 3083, Australia

Phone: +613 479 1270, Fax: +613 470 4915

Abstract

This paper describes DFDEdit, a prototype graphic editor for the
creation and modification of Data Flow Diagrams. The paper deals
with the issues of the editor user interface, the representation of the
diagram information contents, and the system ability to browse
through a document repository in a hypertext-like fashion. A brief
description of the prototype implementation in Apple Hypercard™ is
also given.

April 1991 - Page 2

1 Introduction

The HyperCASE project brings
together a complete suite of loosely
coupled Computer Aided Software
Engineering (CASE) tools. The
tools provide the support to software
developers in the planning,
specification and design stages of
the software life cycle, via both
textual and diagrammatical
presentation techniques embedded in
a hypertext framework. The
HyperCASE system allows its users
to create software design documents
(e.g., Data Flow, Entity-Relationship
or Nassi-Schneidermann diagrams)
which could subsequently be browsed using their contents rather than their physical
organisation.

This paper describes a prototypic diagram editor developed to

a. gain experience in the design and implementation of editors of this kind for
the development of a fully customisable diagram editor for HyperCASE,

b. develop techniques for allowing all components of a diagram to be treated as
a button.

The prototype was developed using a commercially available hypertext system,
namely Apple Macintosh Hypercard, which will be the hypertext system referred to
in this paper.

Data flow diagrams are one of the most popular and effective representations for
functional analysis and structured design.

The main objective of data flow diagrams is to pictorially describe the flow of data
in a software system using graphical objects representing the system processes, data
stores, external entities and flows (see Fig. 1).

HyperCASE
 VISTA DFD-204

Direct-Digital-Video

Input-Analogue-Video

C
apture-

Attrs
C

apture-
Request

2
Image-

Processing

Single-Frame

User

Moving-Sequence

1
Video-
Capture

Anal-
Video-
Sink

Anal-
Video-
Source

Reply-
Request

Reply-Attrs

Stored-Attrs

3
Video-
Replay

Figure 1 - Sample DFD

Data Flow
Diagrams

April 1991 - Page 3

The DFD Edit diagram structure and the shapes of diagram components conform to
the slightly modified Gane and Sarson notation, which is as follows:

double squares denote external entities, i.e., sources or destinations
of data external to the system, e.g. operators, clients, etc.;

rounded rectangles denote processes transforming data flows, e.g.
receipt of an invoice, posting a transaction to the ledger, or
production of a report;

open-ended rectangles denote data stores, e.g. files or databases;

arrows represent data flows transformed by the system processes, e.g.
a data entry form, a cheque requisition, request for information;

frequently a data flow diagram spreads over many pages and some of
the flows have to cross the page boundaries, terminators are used to
depict the continuation of flows over split pages.

Each of the DFD processes may be defined, or refined, according to
the top-down analysis terminology, by either another diagram or by some kind of an
activity chart (lowest level of definition, e.g. Nassi-Schneidermann charts,
structured English or flowcharts). Data flows and stores are usually specified in a
data dictionary notation or via Entity-Relationship charts.

The automation of DFD production relieves the system analysts from laborious
drafting of processes, stores, entities and flows, alleviates the need for frequent
redrawing of diagrams, allows for the delivery of professionally looking software
designs. Additional tools for the integration of software documents into readily
accessible repositories with the capability of inter-document navigation would
certainly enhance the DFD editor capabilities.

The following sections examine the factors needed to be considered in developing a
graphical editor for DFDs, the editor function, diagrams layout and their aesthetics.

Hypercard™, developed by Apple Computer and Claris, was selected as a
prototypic platform under which the research described in this paper was conducted.
It is therefore useful to describe some of the basic properties of Hypercard.

Hypercard supports the creation of the following types of components:

Id

Name

Id

Name

Id Name

Id Name

 Flow

Flow

Hypercard

April 1991 - Page 4

• buttons which can be clicked on by a mouse to perform certain activities,
such as navigating to a different card, or performing some mathematical
calculation(s), the button attributes include their style, size, position,
highlighting and naming conventions, associated icons, etc.;

• fields which hold textual information, their attributes also include the style,
size, and position, but also the text font, its size, style, and margins;

• cards on which the buttons and fields can be created and positioned;
• backgrounds which contain common characteristics for a collection of cards;
• stacks which are the card repositories;
• scripts are the HyperTalk code describing the behaviour of Hypercard

components, they consist of modules termed functions and handlers
monitoring events related to the components in which they reside (e.g. a key-
stroke or a mouse-click).

The Hypercard features allow the creation of movable buttons representing the DFD
processes, stores and entities, or to assume certain hypertext properties by DFD
documents, like navigation links between the processes and their refinement
diagrams.

One of the main requirements for HyperCASE is its ability to efficiently handle
large numbers of documents and the links between them. Although Hypercard is
generally adequate in producing small prototypes it does not meet the excessive
requirements of the HyperCASE project which will handle documents in the order
of 106 pages. In order to handle such a large number of inter-document links
efficiently, the use of a database external to Hypercard is necessary.

April 1991 - Page 5

2 Data Flow Diagram Editor (DFDEdit)

DFD Edit windows (see Fig. 1), similarly to other HyperCASE windows, consist of
three partitions :- the tool palette, the work and the message areas allowing for the
selection of an editor tool, the construction and manipulation of graphical objects
with the selected tool, and the display of system messages, respectively.1

The message area is used to
display information consisting of
error and help messages which
are useful in informing the
designer about the state of the
system. Some more intuitive
errors result in a beep without a
message being displayed.

The selection of either the
process, flow, data store or
external entity tool from the tool
palette of the DFD editor, allows the designer to create and position one of the
components in the work area. The browse tool, is used for viewing the diagram,
and navigating to various pages making up the design document.2

The tools selected from the palette trigger the editor to enter an operational mode
which allows a diagram component to be created on the screen. The mode will then
persist allowing the repetitive application of the same function by the designer to the
diagram.

With a tool (other than a flow) chosen, the user may position the mouse cursor at a
particular place in the work area and press the mouse button down to create a tool-
specific DFD component. By the subsequent dragging of the mouse, the component

1 Note that tool refers to a mechanism which is used to automatically generate some specific

graphical feature in the diagram.

2 A reasonably sized system of DFDs would take up more than one page (screen), and viewing its

diagrams would require navigation from one portion (page) of the DFD to another.

Layout

Title bar

Zoom box Size boxScroll bars

Expand box

C
lo

se
 b

ox

Name

Work
area

Message area

To
ol

 p
al

et
te

Object

1.1

Process-
Invoice

Figure 1 - DFDEdit window layout

Function

April 1991 - Page 6

can be re-positioned to a more desirable location, and then its text fields may be
typed in as required (most likely the component id and its name).

When creating a data flow, the designer must click the mouse onto an existing non-
flow component (i.e. external entity, process or a data store) to select a flow source.
While the mouse is dragged over the work area the flow lines are drawn. Bends
may be generated in the flows by altering the mouse movement direction between
mouse clicks. The flow definition is completed when either the user clicks onto a
target component (other than a flow) or double-clicks on the background thus
declaring the flow to be continued elsewhere (for a visual feedback of this action a
special terminator component will automatically be appended to the flow). The start
of a flow and its end, symbolised by an arrow-head (except for the terminator), are
automatically aligned to the edges of the source and target components,
respectively.

Once a graphical presentation of a DFD component is accomplished (i.e. its shape,
position, size, id and name), then a dialogue box containing the conceptual
information about the component may be displayed and possibly altered (e.g. the
name of the analyst defining the component, the programmer responsible for its
future implementation, the allocation of component-related resources, etc.), thus
completing a DFD component specification.

When finally completed, a set of DFD documents may be searched through by
placing the editor into a browsing mode and the subsequent selection of individual
diagram components with the mouse. Thence, clicking the mouse onto a process
button will navigate the user to the process refinement document (whether another
DFD or an activity chart), the selection of a flow segment or its name (or data store
icon) will lead to a data dictionary document, the flow terminator will react by
displaying a page with a flow continuation, its appropriate source or a destination.

Some aspects of diagram aesthetics can be easily accommodated and fully
automated in a computer-aided diagramming tool. Aesthetics alone may lead to a
significant improvement in diagram clarity and a decrease in its complexity. It may
reduce the time and the cost of producing charts and graphs, and could enable the
creation of better-structured design documents. Overall it increases the
maintainability of generated documentation and thus improves the productivity of
designers.

Aesthetics

April 1991 - Page 7

The ability to aid the construction of well-structured data flow diagrams was
seriously considered during the implementation of our DFD editor. We
recommended the following diagram properties as especially important:

a. the global area of the diagram should be minimised;
b. the flows ought to consist of vertical and horizontal lines only;
c. the flows must not cross over any non-flow components;
d. the number of crossings between flows should be minimised;
e. the number of bends in the flows should be reduced.

Some of the recommendations (e.g. b and c) were readily incorporated into the DFD
Edit, others (i.e. a, d, e) rely heavily on the use of an invisible grid3 aiding DFD
component alignment, preventing their overlaps and collisions, allowing a better
utilisation of space available drawing, etc.

The icons depicting DFD processes, external entities and data stores are positioned,
moved and re-sized within the work area in accordance with a widely spaced grid.
Although, the primary purpose of using such a grid is to assist the designer in
mutual alignment of the diagram components, it also provides a way of unique
identification of DFD components within the work area by the grid coordinates.
This facilitates the prevention of component overlapping or their collision during
the user instigated manipulation.

The major difficulties in producing neatly laid out data flow diagrams arises,
however, not in the positioning of iconic component of fixed shape and size, as is
the case with DFD processes, stores and entities, but in the organisation of
arbitrarily shaped, multi-segment flows. Some of the constraints put on the flow
construction may be easily alleviated by also aligning them to the grid (b and e).
The coarse grid used in positioning of non-flow DFD components, however, is not
quite suitable for this purpose, as in some circumstances it may increase the global
area of the diagram (due to the inability to draw lines close together) or may force
certain flows to overlap (insufficient drawing space for diagram enlargement
leading to the violation of a and c). Therefore, a thinner grid was chosen for the
alignment of data flow elements.

3 The grid technique is a widely used and described method of achieving neater layout

April 1991 - Page 8

A problem with using a variable sized grid in editing different types of DFD
components is that the arrowheads on the flows may not be positioned directly on
the edge of the components they are linking. In order to overcome this, the size of
the non-flow components is selected so as to force their perimeter to align with a
thin grid line, even though its movement and manipulation is governed by the
coarsely spaced grid. Since the flows are drawn according to the thin grid lines, the
arrowheads are then positioned exactly on the component's perimeter.

3 Contents Database (CDB)

Every diagram constructed with a HyperCASE editor is represented in a Contents
Database (CDB) for later reference by other HyperCASE tools. The representation
ignores all of the component presentation attributes (e.g. shape, colour, position,
etc.), which are graphics system dependent, and retains only the conceptual
information about the components and their relationships (e.g. component id, its
name, the creator and implementer information, its relationship with other
components via attributes and flows). The components conceptual information may
be normally viewed and altered through the information dialogue box being invoked
during the components editing.

We now describe the specific use of the CDB in DFDEdit. The contents database
contains two different types of information about DFD components. First is the
component definition, e.g. a definition of a process as a DFD, Nassi-Schneidermann
diagram, or C function, or the definition of a data flow using an Entity-Relationship
diagram, a data dictionary, or a particular database schema (note the possibility of
multiple definitions in both process and data descriptions). The second type of
contents information is a collection of references to the uses of the component , i.e.
its appearance in a particular DFD or ER diagram. Both types are stored in CDB and
are heavily indexed and cross-referenced.

Any of the DFD Edit component manipulations, whether its creation, deletion,
renaming or simply re-positioning, is checked for the change in component's
information contents and if positively detected, the modification is readily reflected
in the CDB database.

Component
Information
Contents

April 1991 - Page 9

The CDB contains the logical information of the entire collection of components
created as part of the system development. This collection of components consists
of:

• folders which contain information about different types of projects;

• documents which are specific components of the collection of software
design documents (e.g., DFDs, E-R diagrams, C code or a Data Dictionary);

• pages which are the component of the documents (a collection of pages
makes up a document);

• components which are the constituent parts of the document being created
(e.g., data stores of a DFD, entities of an E-R diagram, field and store
sections of a data dictionary, or code modules of a source code).

 Each component in the CDB has an associated CId that uniquely determines the
component within the database (i.e., the CId acts as a key to the CDB files).

4 Presentation Database (PDB)

Each DFD document, together with its components, has a number of properties
which depend heavily on the appearance of the diagram components as defined by
the data flow methodology (which varies between software engineering authors), the
facilities offered by a particular graphics package, the capability of ten devices, etc.

Because of such tremendous dependencies and great variability, the component
presentation information is kept separately from their semantic characteristics. The
Presentation Database (PDB) is used solely for this purpose.

In this section we give an outline of a PDB structures as dependent on the
Hypercard graphic and control system.

Also, due to the similarity in the presentation nature of DFD processes, entities, and
stores, in this section we will refer to them simply as static objects. Unlike the
flows, the static objects' shape and size is predetermined. Data flows and their
terminators are considered separately because their shape can not be preset and must
be drawn by the designer to fit into the diagram, or generated by the editor.

Component
Types

April 1991 - Page 10

All of the static objects are constructed using Hypercard buttons and fields of
different shapes. Clicking on one of the static object's components causes the
execution of its script which will identify it not as a separate card button but as a
part of the component itself. Here is a brief description of static objects' layered
presentation :

a DFD process is constructed of a base being a round rectangle
button, the id and name fields, and a black rectangular button of only
1 pixel height separating the id and name fields;

an external entity is a button styled as a shaded rectangle, with two
fields, id and name, placed on top of it;

a data store is implemented as a shaded rectangle button with a 1
pixel wide button separating the id and name fields, in addition an

opaque button is placed at the right end of the store to create its "open" look.

Once drawn, the static objects could be easily re-positioned by first hiding all of the
auxiliary sub-components (like id and name fields, separation and occluding
buttons), dragging their base button to the desired position, and subsequently
readjusting the coordinates of all the remaining components and re-displaying them
again. The id and name editing can also be easily accomplished by unlocking the
fields for this particular purpose then then re-locking them again after the operation
is successfully completed.4

The data flows being dynamic DFD components, consist of many editable sub-
components, i.e. their line segments, angles, arrowheads, and the name. They are

implemented in Hypercard with a set of buttons representing the flow
segments, their connectors, and a single field placed across one of the
segments and containing the flow id and its name.

4 It should be noted, that an initial implementation of DFD Edit objects utilised the both bitmap

drawing capability of Hypercard mixed together with the use of buttons and fields. This approach

resulted in certain inefficiencies, e.g. inability to undo bitmap actions, difficulties in flow editing,

etc., thus it was finally replaced by the all button and field solution only.

Processes,
Stores,
Entities

Id

Name

Id

Name

Id Name

Flows
Terminators

Id Name

April 1991 - Page 11

The connectors represent the arrows of different direction, angled
curves, terminators, and the source attachments (vertical or
horizontal lines). The choice of angled connectors depends on the

segment arrangement. The direction of flow arrows and terminators is determined
from the direction of the flow lines.

Figure 3 - The construction of flow segments

(black - mouse movements, shaded - actual segments)

The flows are created by first electing the source (static) component and then
performing a series of mouse clicks corresponding to the position of the segment
connectors. All segments are located immediately under the connector buttons and
between the clicks they change their length and direction to follow the grid-
constrained mouse movements. The sequence of buttons is terminated upon the
click on the target components button or a double click on the background, thus
creating a flow terminator.

To restrict the segment directions to horizontal and vertical only all of the diagonal
movements of the mouse are translating into a multi-combination of straight
segments (ref. Fig. 3).

A flow may be edited by adding an extra segment, which may be accomplished by
grabbing one of its segments and then breaking it by dragging. Alternatively we may
re-shape it by holding the angle connector and moving it around the work area, all
of the segments neighbours will be re-adjusted appropriately. Flows can also be re-
linked by holding the source or target attachment (i.e. arrows or straight lines),
moving them away from the component, and subsequently adding extra links as
during the flows original creation. They may also be re-directed, a double clicking
on any segment of the flow causes the change of the flow direction. Double clicking
the flow name (similarly to the static object), unlocks their id and name fields for
further editing. The position of flow textual information may also be altered by
grabbing the flow label and moving it along the flow segments (note the field will
"stick" to the flow path).

April 1991 - Page 12

 All of the components, whether static or dynamic objects, have an invisible field
associated with their graphical representation. The field contains all of its structural
information, i.e. the id-s of the component's constituents, the list of neighbour
components, the parent components (if the button is a sub-component of the parent),
etc. This field is used while creating and editing DFD components so as to
eliminate constant access to the Presentation Database (described in the next
section), but also to convey the structural and navigational index information of the
DFD, allowing components to be associated with other documents such as data
dictionaries.

The Graphic Database is used to store all the presentation information about each
component of the DFD. Each record in this database describes a component and its
constituents, which are dependant upon the underlying platform on which the
component was created - in this case, Hypercard. The use of this database allows all
the presentation information (i.e., the implementation information required by
Hypercard) to be separated from the logic information used by the system (e.g., the
name given to a process by the designer). The issue of portability is addressed by
using logic information to run the system, which is independent of the platform on
which the system is built.

Fig. 4 describes the objects used in the implementation of a flow. It shows that the
flow named invoice with id number 6 is made up of five Hypercard buttons and two
Hypercard fields which display the flow id and flow name respectively.

Arrow
Button

Curve
Button

Line Buttons

6 invoice

Text Fields Name
Button

(On top of
 fields)

Figure 4 - The Presentation Components of a Flow

Each sub-component of the diagram component is labelled with a number, which
we will call a Graphical Id. (GId) number. This number is used to uniquely identify
each Hypercard component used in the creation of the DFD. Any event associated
with a component (such as a mouseclick on the component) will make use of the
component's GId. So, we can view the GId of a component as an interface between
the component and the designer. Furthermore the GId can be used as a key index to

Component
Internal
Structures

Presentation
Database

April 1991 - Page 13

a presentation database consisting of all the Hypercard components making up the
DFD.

The design of the Presentation Database (PDB) has led to the identification of the
types of components to be stored in the database and an analysis of the relationship
between these components and the conceptual components stored in the Contents
Database. The PDB will store information about the following Hypercard
components:

• Stacks which relate to folders (folders may consist of many documents);

• Backgrounds which are associated with documents (e.g., DFDs, DDs,....);

• Cards which are analogous with pages;

• Fields and buttons which map onto sections in pages and various diagram
components (e.g., in a DFD, fields and buttons will map onto processes, data
stores, etc.);

The four components described above are the entities of the PDB. The relationship
between these entities is illustrated in Fig. 5, which is a simplified Entity
Relationship diagram for the PDB.

STACKS
BACK-
GROUNDS

CARDS

FIELDS
 AND
BUTTONS

Figure 5 - The Presentation Database Entities

In order to associate the PDB with the CDB described earlier, a cross-referencing
table is used, which maps the logic information stored in the CDB to the
presentation information stored in the PDB (i.e., this table is the interface between
the two databases). The cross-reference table uses the keys of both databases as
well as a field specifying the corresponding table in the PDB, to associate records in
the 2 databases.

To illustrate the association between the two databases, we refer to the flow
described in Fig. 4. The record in the CDB corresponding to this flow is shown in
Fig. 6.We noted earlier from Fig. 4 that the flow consists of five Hypercard buttons
and two Hypercard fields, so, in the PDB, the flow will be represented by the seven
records in the Fields and Buttons Table of the PDB, shown in Fig. 6. The
association between the two databases storing the flow is represented in the cross-
reference table. A mouseclick on the flow will obtain the GId of the Hypercard type

April 1991 - Page 14

(i.e., field or button) that was clicked on, find the corresponding entry for that GId
in the cross reference table, and thus obtain the CId of the flow. Using the CId, the
record for the flow in the CDB can be accessed to determine information such as the
flows name, etc. Note that until the record in the CDB is found, the component type
(i.e., flow, process, data store) of the Hypercard component clicked on can not be
determined.

CDB

6 invoice...

Cross
Reference
Table PDB

6 05
6 06
6 07
6 08
6 09
6 10
6 11

05 buttot...
06 button...
07 button...
08 button..
09 button..
10 field.....
11 field....

CId

CIds GIds

Fig. 6 Association between databases

5 Navigation Database (NDB)

Apart from visually representing the flow of data in a system, DFDs can be viewed
as an index to other documents such as data dictionaries and process specifications.
Thus each component in the DFD can be used to navigate to various documents
containing other forms of information.

Inter-document linking is the core of the HyperCASE project. Its importance is
evident when the potential size of the collection of documents describing a system
is taken into consideration. A large system would require a huge amount of
information processing at the analysis and design phases, resulting in the creation of
many pages consisting of parts of DFDs or parts of data dictionaries, etc. The pages
must be organised in a way that allows the designer to clearly understand the design
of the system, and allows the representation of the documents to move away from
the inherently sequential representation of information that is commonly used in
books. The use of a hypertext system allows information to be represented and
browsed in a logical structure, rather than placing constraints on the way the
information is viewed by using a physical structure (e.g. the difficulty in viewing
related information that appears in various forms within different documents).

In order to use the hypertext concept in structuring our information, we must first
determine how the inter document links (page links) will be established and then
associate them with various behavioural properties. Once these properties are

Inter Document
Linking

April 1991 - Page 15

obtained, the link information (i.e., the link along with its properties) will be stored
in a database.

Like the representation of the information content of diagrams, the inter document
links make use of the conceptual rather than presentation information of the system.
This allows the representation of the navigational links between components to be
separated from the underlying platform on which the system is built, thus making
the navigation aspect of the system portable over many platforms.

As stated earlier, components can be linked to a number of different documents,
each of which may contain the definition of the component (e.g. a process can be
defined by a refinement DFD, a Nassi-Schneidermann diagram and a code module).
Furthermore, there is no way of knowing how many definitions for a component
will, in future, be created and how many component references will appear in the
collection of documents making up the project. The linking mechanism must
incorporate a method for dealing with these issues which also avoids repetitive
information being stored in the Navigation Database (NDB).

The linking mechanism makes use of a transient object (which in implementation
view points can be a pop-up menu) to represent all references of a component .
Each different type of component is associated with a unique transient object Each
time a component is created in a document, the CDB is checked to determine
whether a definition of the component already exists. If not, a new transient object
is also created and the component is linked to this transient object. Once the
component is defined in another document, the transient object is linked to the
definition. Thus, all references of the same component , independent of how many
documents the component appears in, are represented with one link ,i.e. to the
transient object, which in turn is linked to the definition of the component . The
creation of any further definitions for the component are simply dealt with by
linking the transient object to the definition created.5

Presenting the transient object using a pop-up menu allows all the definitions of the
component to be visually represented whereby the user can select a desired

5 The method used to establish links has important contributions to integrity checking. If, for

example, a process in a DFD has a refinement DFD diagram defining it, other refinement DFD

diagrams should not be allowed for that process. The transient object can detect such repetitions.

Establishing a
Conceptual Link

April 1991 - Page 16

definition of the component and navigate to it. Each time a new definition for a
component is created, it is added to the list of menu items in the pop up menu.
When a component is first created and it is not defined anywhere in the system, the
pop-up menu is empty, denoting that the component has not yet been defined.
Alternatively, the component's definition may be created first whereby the pop-up
menu associated with the first occurrence of the component in a document will
contain an entry that links the component to a definition.

All Hypercard components have a script associated with them in which HyperTalk
commands can be issued. These commands specify the behaviour of the system
when an event, such as a mouseclick, occurs on a component . The script associated
with a particular event is known as a handler. A component in Hypercard may have
many handlers associated with it, all of which make up the component's script.

In Hypercard, links between components are established using a goto construct in
the component's script. A common handler for referencing components is the
mouseup handler which performs actions when a mouseup event occurs on the
component . A statement in a component's mouseup handler of the form:

go to card "data dictionary 1"

links the component to a card named data dictionary 1. Upon execution of the
above HyperTalk statement, the system navigates to the card data dictionary 1. The
statement is executed when the component receives a mouseup event (i.e., by
clicking the mouse on the component).

Hypercard's component linking mechanism is cumbersome in the sense that every
link must be specified in the component's script. So, an application with 1,000
linked components would require the specification of 1,000 scripts, each containing
a goto statement. Although Apple probably designed this link strategy to allow for
modular development of applications, this sort of design separates the links which
are related parts of an application and should be represented in a common structure.
In order to overcome this limitation, a database has been used to store the links
when a component is created and to perform the inter document navigation.

In order to create a link, it is first necessary to determine the type of information
required to establish the link. There are basically 2 elements that must be specified
in order to create a link:

Establishing a
Link at the
Presentation
Level

April 1991 - Page 17

• the source component ;

• the destination page.

The source component is basically a Hypercard button that is identified by it's name.
Similarly, the destination page is a card in Hypercard that is also identified by its
name. The link is an association between the source component and the destination
page such that when an event such as a mouseclick occurs on the source component,
the system navigates to the destination page.

Depending on the component type that it is linked to, a link may have various
activities associated with it. These activities are expressed at the conceptual level
and interpreted by the presentation level.

All components making up the documents describing a system can be divided into
2 broad classes; components that have a definition and components that do not (e.g.
in DFDedit, processes, data stores, external entities and flows represent those
components which have a definition, and terminators, those components that do
not). Usually, the definition of a component may also be associated with a
definition, and so on. When browsing a document using defined components , it is
useful to be able to return to a component once the definition of the component is
viewed. This involves keeping track of the browsing path taken by a user and
allowing them to traverse the path in reverse. A stack can be used to achieve this,
where pages can be pushed on the stack as they are visited and then popped off the
stack to return to the pages. This track keeping is not useful for components
without a definition and so these components can simply navigate to the page they
are linked to without operating on the stack. Note that these components are not
associated with a transient object either.

All components can have certain visual effects related to them. For example a
terminator pointing to the right can use the Hypercard visual effect scroll left upon
navigating to its destination or a process can use the iris open effect when
navigating to "expose" it's definition. The visual effect that appears when the
component navigates to its destination counterpart is determined depending on the
type of component and its properties (which are reflected in the CDB). For
example, a terminator's direction can be ascertained by refering to its entry in the
CDB and then the appropriate direction for the window scrolling visual effect can
be automatically decided.

Pages making up a document usually consist of many parts of information (e.g., a
data dictionary has many data definitions on one page). In order to clarify the way

Linking
Activities

April 1991 - Page 18

information is viewed throughout the collection of system documents, it is useful to
highlight parts of information on a page when navigating to that page. This can be
achieved by placing Hypercard buttons with a transparent property over each
"chunk" of information stored in the document. Highlighting this button using
Hypercard, allows the chunk of information held under the button to stand out from
all the other information on a particular page.

All the actions related to components are described at the conceptual level and do
not rely on the implementation aspects of the system. This is reflected in the
database design in which high level action identifiers are used to represent certain
low level activities.

The Navigation Database (NDB) resides at the logical level of the system (see Fig.
7). It is used to store the links between all the relevant components of the system,
communicating with the presentation database (through the cross referencing table)
in order to perform the navigation and activities associated with the link, at the
presentation level.

A record in the NDB consists of 3 fields specifying the source and destination of the
link, and the activity associated with it. Both the source and destinations of the link
are represented by their respective Content Id numbers and the activity by a special
keyword which is translated by the system to denote a particular presentation action.

In order to access the database, the CId of the component at the source of the link
must be known.6 This can then be used to find the appropriate record in the NDB
which specifies the CId of the component representing the destination of the link.
We note that the destination field in the database can be a transient object in which
case a pop-up menu appears on the screen without any navigation taking place.

6 This can be determined using the GId number -obtained when the component is clicked with the

mouse - and the cross reference table, to look up the appropriate CId for the component.

Navigation
Database

April 1991 - Page 19

LOGICAL LEVEL
Contents Database

005 process print...
006 flow Invoice...

128 C code...
129 DFD...
130 DD...

Navigation Database

005 128 in
006 130 left

Cross Reference Table

005 022
005 023
005 024

CId entries
(Database key)

logic/presentation

 interface

PRESENTATION LEVEL

CId entries

Presentation Database

022 field...
023 field...
024 button...

155 stack...
156 card...
130 background...

 GId entries (Database
key)

Fig 7 Database separation in the conceptual/presentation levels

A selection of one of the entries presented in the pop-up menu determines the
destination component of the link and another search through the NDB locates the
record representing this link. This serves only to determine the activity associated
with the link since the destination of the link was obtained when the user selected an
item from the pop-up menu.

6 Conclusions

This paper describes a prototypic diagram editor, DFD Edit, being an inherent part
of the HyperCASE user interface, used in the construction of software diagrams
with a particular emphasis on Data Flow Diagrams. The editor has incorporated the
hypertext concept by allowing all diagram components to be represented as

Summary

April 1991 - Page 20

hypertext buttons, facilitating their linkage with various other documents containing
different forms of information. A commercially available hypertext system,
Hypercard developed by Apple Computer, Inc., has been used as the platform on
which the prototypic editor has been implemented.

Special emphasis was placed on the separation of the conceptual and presentation
information of the editor, thus allowing it to run independently of its
implementation aspects. A database for the editor has been designed that
incorporates the separation, and overcomes some of the problems related to efficient
utilisation of space.

Finally, various factors related to the development of diagram editors have been
considered. Aesthetics have been determined to assist the development of neatly
laid out diagrams, which have been incorporated using a grid technique.
Furthermore the representation of diagram components as buttons has been
accomplished which allows them to be easily manipulated and linked to various
other documents.

