Experiments with multi-layer perceptrons

J.L. Cybulski!, H.L. Ferrd?% A. Kowalczyk> and J. Szymarniski*

134 Artificial Intelligence Systems % Department of Mathematics
Telecom Research Laboratories Monash University
770 Blackburn Road Clayton, Vic. 3168
Clayton, Vic. 3168 Australia
Australia

Abstract

This paper reviews results of experiments with three different class-
es of multi-layer perceptrons. The experiments performed ranged
from simple deterministic and noisy pattern recognition, to the large
size classification problems in natural language parsing. The experi-
mental results reveal some of the benefits and disadvantages of dif-
ferent models, their space/time requirements, and finally their applica-
bility to different problem domains.

1 Introduction. Decision tables (cf. Fig. 1.a) are often used as one of the most straight-
forward techniques for decision making. They appear implicitly or explicitly in numerous appli-
cations in different areas of Artificial Intelligence, e.g. in Vision, Speech Recognition, Natural
Language Understanding and Expert Systems. In spite of their simplicity, decision tables are
quite cumbersome to use in practice. They consist of a number of decision rules formed by ex-
plicit enumeration of all possible combinations of observable control attribute values and cor-
responding actions (decisions). The number of such rules often rises exponentially with the
number of control attributes which clearly increases the computational complexity of the deci-
sion table processing. As an alternative solution, it is possible to generate (or calculate) de-
cisions dynamically from the observed attribute values. Decision trees (Breiman, et al. 1984,
Quinlan 1979, 1983; see also Fig 1.b) and multi-layer perceptrons (cf. Section 1.1 and Fig
1.c) are two examples of such dynamic decision systems. This paper focuses on various is-
sues related to some classes of perceptrons and will occasionally refer to decision trees for
comparison reason only.

1.1 Perceptron Structure. Two layer perceptrons (or just perceptrons) are collections of
processors of limited capacity and storage interconnected by weighted links. The processors
are repositories of values also known as activations and are arranged in two layers of active
units, hidden and output, and an additional layer of passive input units. Perceptrons associ-
ate appropriate output patterns with given sets of input values by massively parallel compu-
tation and communication of activations (Minsky and Papert 1969, Rumelhart and McClel-
land 1986, Lippman 1987).

Page 1

(a) 11 12 I3 I4 IS I6 |17
ql Y Y Y N Y N N
q2 Y Y N Y N Y N
q3 Y N Y Y N N Y
q4 Y N Y Y N N N
Prob. | 0.25 |0.10 [0.10 | 0.10 | 0.05 | 0.10 | 0.20
al 1 0 1 1 1 1
a2 0 1 1 1 1 1 1

In this paper, we consider only a restricted class of perceptrons (Fig. 2). We assume all
input units to have binary activation (i.e. 0 and 1 values), all hidden units to calculate logical
conjunctions of subsets of inputs also resulting in their binary activations (cf. conjunction is
also implementable with the ‘threshold logic’), and finally output units to calculate the
weighted sum of all lower layer unit activations (note that the zero weight connections are
routinely omitted). Depending on the nature of these weights three different classes of per-

Fig. 1 - Illustration of three approaches to decision making:
(a) decision table, (b) decision tree and (c) two layer (integer) perceptron

qLLN qLY q2,N q2,Y ¢3,N q3,Y q4

ceptrons may be distinguished :-

(i) Real perceptrons. Weights o.j, ...

ordinary arithmetic sum.

(ii) Integer perceptrons. They are real perceptrons with integer weights.

(iii) Binary perceptrons. In this case the weights a, B,... € {0, 1} and the output sums are
taken mod 2 (this corresponds to logical XOR).

In the real and integer cases the positive links are denoted by the solid and the negative
ones by the broken lines.

Note that the binary perceptrons may be obtained by formally ‘factorising by 2’ all weights of

Page 2

are real numbers and the sum in the output is an

al a2
Output Units Legend

a@; S /@\ i O Inpus (e {0,1})
3 ¢ Weights () Conjunction (*, n)
Q@ Bias (1, True)
/ M \@ Hidden Units D Weighted Sum (+, ®)
J PO GO0 Y
Input Units X 5 Weights (e R)

ql q2 q¢3 q4 g5 q6b 0

Fig. 2 - A two layer perceptron

integer perceptrons, i.e. by retaining all the odd weighted links and discarding all of the even
ones.

Our perceptrons differ from the typical 2-layer perceptrons (Minsky and Papert 1969,
Lippman 1987) in respect to the following:

(i) the weights of links from input to hidden units are binary rather than real values,

(i) our hidden units, performing logical conjunctions of their inputs (or equivalently mult-
plication), can only be viewed as a subclass of more general threshold units, and

(iii) the thresholds in output units are only optional.

It is not difficult to see that any deterministic transformation from a finite set of finite bit
strings into a set of the finite strings of real numbers (or strings of bits) can be implemented
by a real (or a binary) perceptron of the above form. Thus, the structure is quite general. The
thresholds in the outputs may be added as necessary. However, the explicit consideration of
linear outputs in early stages of training allows more freedom (e.g. by taking the largest of
outputs, if appropriate - cf. Section 3.2) and simplify our training algorithms. Moreover, from
Widrow and Hoff (1960) it follows that if such a ‘linear perceptron’ is first trained in terms of
minimizing its mean-square-error, then an imposition of a threshold on each of its outputs
does not significantly affect the perceptron’s overall performance.

As an illustration, let us consider a simple decision table in Fig. 1.a containing a set of
seven rules for four binary control attributes ¢/,....g4 ('Y’ and N’ values) and two binary de-
cisions al and a2 ("0’ and ’1’ values). A decision tree in Fig. 1.b and a two-layer integer per-
ceptron in Fig. 1.c are equivalent to this decision table. It is also worthwhile mentioning that
typically, for a given problem, there is a number of different perceptrons of equivalent perform-
ance, for instance, Fig. 3 depicts five different perceptron architectures of performance identi-
cal to that of the perceptron in Fig. 1.c. (note that xi in Fig 3 is equivalent to ¢i,Y in Fig 1.c).

1.2 Remarks on training algorithm. A perceptron applicable to a given task (i.e. perform-
ing a specific set of input/output transformations) may be constructed either algorithmically
or by applying an appropriate training algorithm to the a set of selected exemplars (Minsky
and Papert 1969, Grossberg 1980, Hopfield 1982, Ackley, Hinton and Sejnowski 1985).

Page 3

yl y2 (@) y1 y2 (b)

x1 ' x1 x2 x x4

x1 yl1 -1.0 { hl y1+42.0 | h3 y2 -1.0 x1 yl -2 x3 y2 +1 h3 y2 -1
x2 yl -1.0 | hl y2+1.0 | h4 yl -0.5 x1 y2 +1 hl yl1 +3 h4 yl1 +2
x3 yl -1.0 | h2 y1 +1.5 x2 yl -2 | h2yl +1 h4 y2 -1
x4 yl -1.5 | h2 y2 -1.0 X2 y2 +1 h2 y2 -1
x4 y2+1.0 | h3 yl1 +2.5 x3 yl -2 h3 yl +1

x1 *2 x3 x4

Fig. 3. Five different perceptrons
implementing decision table in Fig l.a:

xl yl -1 hl y1 +2 h3 y2 -1

x2 yl -1 hl y2 +1 (a) a real perceptron,

(b, ¢) two integer perceptrons, and

x3yl -1 |h2yl +] (d , e) two binary perceptrons
x4 yl -1 h2 y2 -1 . .
x4 y2 +1 h3 yl +2 Note that weights for non-binary

perceptrons are given in a tabular form

Back-propagation (Rumelhart, Hinton and Williams 1986) is the most popular algo-
rithm for the design of perceptrons. It starts with a totally interconnected perceptron struc-
ture with random weights. Then the weights are gradually changed in the direction of minimi-
zation of m.s.e. between the actual and desired outputs for each of the exemplar inputs. The
procedure requires typically a considerable number of passes of data, manipulation of differ-
ent control parameters, and significant computational power. Additionally, the method de-
mands active units to have differentiable non-linearities (usually sigmoid), which forces
large weights, unsatisfactory ratio between the largest and the smallest of weights, etc. (Cf.

Page 4

Epilogue of Minsky and Papert, 1988 edition.) Nevertheless, the method was proven to pro-
duce satisfactory results in a number of applications.

It is reasonable to expect that a back-propagation approach could be considerably en-
hanced if started with initial 'roughly correct’ perceptron structure rather than a random one.
Hence, an alternative approach to the perceptron design, as outlined below, could be utilized
for such an initialization.

Our algorithms perform a heuristic-controlled search for, and addition of, suitable hidden
units, generally from their lower to the higher order (Cybulski, Kowalczyk, Szymanski 1989,
Kowalczyk 1989a,b). The crux of the approach is in a relatively quick algebra-based heuristic
assessment of usefulness of the proposed new addition to the list of already selected units.
This saves a lot of computer time, since it is not required to continuously recalculate the

XOR (a) (b) negated number

x2 x3 x4
bit-1 bit-2 sign 3-bit number
x1 yl +1 x1 yl +1 x2 yl +1 hl yl -2
x2 yl +1 x1 y2 +1 x3 y2 +1 h2 y2 -2
x1l yl -2 x1 y3 +1 x4 y3 +1 h3 y3 -2

Fig. 4. Integer perceptrons generated for (a) XOR and (b) negation problem.

weights as in a back-propagation approach. Actually, the weights are calculated once only af-
ter the perceptron structure is determined. The fine tuning by retraining methods, as in back-

propagation, or weight rounding may be used to further improve performance or to simplify
the perceptron structure as desired.

As any other algorithm, our training algorithm has its own drawbacks and limitations.
Our initial research aimed at exploring some of them. It has been a nice surprise to us, that
those boundaries turned out to be further than we anticipated.

The algorithm is memory extensive and is very vulnerable to the number of potential in-
puts to be considered. Experiments indicate that the CPU time increases proportionally with
the size of the training set raised to the power equal to the highest order of the hidden units
needed. Any preprocessing selecting the subset of essential inputs (cf. entropy approach

Page S

Kowalczyk 1989a, rough set approach - Pawlak, Wong and Ziarko 1987) is therefore helpful
in reducing this complexity.

In this paper we intended to illustrate by examples some of the achievements and limi-
tations of our approach. In particular we list the CPU time used to generate the examples
considered in this paper. This should give some idea of the practical complexity of the ap-
proach. To this purpose, we started with two simple experiments (XOR and negation) which
were earlier reported as tests of the back-propagation algorithm (Rumelhart, Hinton and
Williams 1986). To generate the perceptrons in Fig. 4 it took 0.1s and 0.64s of CPU on SUN
3/50. The back propagation solutions had exactly the same architecture, except that the
weights were not so uniform and they were ranging between -10 and 6.3, and the hidden and
output units provided the sums with superimposed sigmoid non-linearity. It was reported
that it took ~450 and 5000 passes of data to obtain the solutions for XOR and negation, re-
spectively. However, these results do not give a fair comparison with back-propagation, as
Rumelhart, Hinton and Williams 1986 gives only the number of passes through the data rath-
er than the CPU time.

2 Deterministic classification by perceptrons with real coefficients

The aim of the exercise was to test and refine the training algorithm for building real
perceptrons in a relatively simple setting. A set of 20 upper case characters stylised on a
5%5 on-off grid was used as a basis for this series of experiments (Fig. 5). All perceptrons
generated here had 25 inputs, corresponding to the units of the grid, and 20 output units cor-
responding to the characters A, B,...,T (cf. Fig 5.a). It was intended that for each valid grid
pattern the corresponding output unit would be set to 1 (the character identification) with all
of the remaining outputs being 0.

2.1 Plain character recognition. In this experiment we constructed a perceptron to recog-
nize characters in Fig 5.a. We found a perceptron with two hidden units of the second order
was sufficient for this task. It took about 4s. of CPU to generate it on the SUN 3/50. All
weights obtained were rational, with denominator 2, and values between -3 and 2.

2.2 Recognition of rotated characters. In this experiment each character class had four
exemplars representing the rotated versions of each of the 20 characters (cf. Fig. 5.b) so al-
together we had 80 exemplars divided into 20 classes. We constructed a 100% accurate per-
ceptron with ~400 connections and 44 hidden units. Its generation time on SUN 3/50 was 40s.

2.3 Recognition of periodically shifted characters. In this case each of the 20 characters
(cf. Fig. 5.a) was periodically shifted 25 times (cf. Fig. 5.c) giving 500 exemplars. The exper-
iment was inspired by a simple idea of a position-independent character recogniser with a 25
units toroidal concentrator (illustrated in Fig. 5.d) which, when unfolded, could be mapped on-
to a 5x5 grid. Each of the units of the infinite plane is (periodically) connected to one of the
units of the toroidal concentrator, e.g. the unit (i, j) of the plane is connected to the unit (i
mod 5, j mod 5) of the concentrator. Thus, each of the characters, in any of the (non-rotat-
ed!) positions in the plane, leads to one of the periodically shifted patterns.

Page 6

Perceptron

5x5 Toroidal
Concentrator

-

Infinite
Plane

(d)

Fig. 5 - Experimental data for the perceptron construction
(a) character set, (b) rotations, (c) shifted characters, (d) toroidal transformation

A real perceptron able to classify all these patterns with 100% accuracy had ~9120 connec-
tions, 374 hidden units (127 of the 2-nd order, 118 of the 3-rd order, 124 of the 4-th order
and S of the 5-th order) and weights ranging from -1.5 to 0.9. Its generation took 2117s on
the VAX 3600.

3 Non-deterministic classification by perceptrons with real coefficients

This experiment aimed at verifying the performance of our learning algorithm in noisy
environments. A model of a simple digit display was chosen to generate data for this series
of experiments. Apart from the model’s simplicity, the choice was dictated by two additional
reasons:

(i) the model can be solved analytically, and

(ii) the same model was used earlier by Breiman er al. (1984) to demonstrate different
features of their decision tree generating algorithm - CART.

Page 7

(@) (b) (c)

Fig. 6 - LED data set
(a) digit set, (b) character features, (¢) ambiguous character

3.1 Background. The model considers ordinary LED displayed digits using seven horizon-
tal and vertical lights in on-off combination (Fig. 6.a).

It is assumed that the display is faulty and each of the seven lights has probability 0.1
of not doing what it is supposed to do. Thus if, say, 5 is supposed to be displayed then any

one of 27=128 possible patterns could be seen. In particular we can have the proper pattern

for 5 with probability 0.97=.478, the pattern in Fig. 6.c with probability 0.9 x 0.1= 0.053, etc.

If the pattern in Fig 6.c is displayed we can find that probabilities of display are: 0.728
for 5, 0.081 for 6, 9 and 0, 0.0090 for 3, 7 and 8, 0.0010 for 1 and 4 and 0.0011 for 2. The aim is
to build a simple decision operator which allocates one of the classes 1, 2, 3,..., 9, 0 to pat-
terns like in Fig. 6.c. in such a way that misclassification is minimal. It is known that Bayes
decision rule allocating the class with the highest probability (e.g. class 5 for the pattern in
Fig. 6.c) is optimal here. It can be proved that for this example the Bayes rule misclassifica-
tion is ~0.26. - '

In practice we are forced to find simple suboptimal classifiers. A simple binary tree with 9
non-terminal nodes on p. 47 in Breiman, et al. , is an example of such a suboptimal classifier.
Its misclassification rate estimated by a test sample of 5000 was reported to be ~0.30. The
tree was initially grown to classify in the best possible way the first 200 exemplars of the
test sample and then pruned appropriately to minimise the misclassification rate for the
whole test sample.

In our experiments we tried to follow Breiman, et al. as closely as possible. We gener-
ated a test sample of 5000 using a standard random number generator. The sample was then
tested by the simulated CART-generated decision tree with misclassification 0.301, which is
very close to the Breiman, et al., result. Then we used the first 200 exemplars to grow a
number of perceptrons which subsequently were tested for misclassification estimated by the
test sample of 5000. Finally we used some retraining procedures to improve performance of
the best of our perceptrons to the theoretical level (~0.26).

3.2 Initial perceptron growing. Two families of real perceptrons were considered (cf. Fig.
7 and 8). Perceptrons in both families have 7 inputs representing LED lights and 10 outputs,

Page 8

corresponding to digit classes 1, 2,..., 9, 0. For a given binary input pattern the output class
with the largest of sums was selected as the final perceptron choice. Each of the perceptrons
in the families was constructed in order to improve the mean-square-error (m.s.e) of its
predecessor, measured for the first 200 exemplars (on the level of output sums). The im-
provement in each case was possible by lowering an acceptance constant, thus allowing new

Terms used 1:‘;- :flf;pt- ;121:0; Misclassification rate
(input and hidden units) | terms
200 | 1000 {2000 5000
1 1,2,3,4,5 b 0.100 0.599 0.252 0.305 [0.313 |0.299
2 +6A7 6 0.095 0.564 0.235 0.280 {0.295 {0.287
3 +4A5A6 7 0.080 0.508 0.213 0.258 [0.271 {0.269
4 +3A4AS5 8 0.060 0474 0.232 0.274 10.283 |0.280
5 +1A2, 3A5A6 10 0.055 0.408 0.205 0.269 10.288 |0.289
6 +1A3/4 11 0.050 0.388 0.210 0.266 {0.283 |0.285
7 +1A6, 2A3/4 13 0.040 0.360 0.195 0.266 (0.283 |0.284
8 +2A3A7, 1A2A5A7 15 0.035 0.338 0.200 0.270 |0.286 |0.285
9 +1A4A6 16 0.030 0.328 0.185 0.270 |0.288 }0.206
10 +1A2A4 ~ 17 0.025 0.318 0.183 0274 10.293 |0.296
Fig. 7 - 1st family of real perceptrons (+ means addition of new terms)
Terms used f:‘)‘;- :flcczpt- ?21:0; Misclassification rate
(input and hidden units) | terms
200 | 1000 |[2000 |5000
1,2,3,4,5 5 0.100 0.599 | 0.252 0.305]0.313 |0.299
2 +6, 7, 1A2, 244, 3AS, 12 0.050 0.380 | 0.205 0.271 |0.285 |0.276
1A3A4, 3A4A5A6
+2A5, 1ASAT, 1A6AT,2A3A7 16 0.033 0.332 | 0.190 0.264 |0.275 | 0.269
+3n4 17 0.025 0.319 | 0.185 0.269]0.283 |0.280
+4AS, 1A3A7, 2A3A6, 3A6AT, 22 0.020 0.289 | 0.165 0.265 {0.285 |0.285
1A2A3A4A5
+1A3A6 23 0.017 0.285 | 0.165 0.263]0.283 |0.283
+1A2A3A4, 2A4A6A7, 28 0014 0.265 | 0.150 0.270]0.293 |0.294
2A4AS5AT, SAGAT, 1A4A6,
8 +3A4A7 29 0.013 0.263 | 0.150 0.269 [0.290 |0.294

Fig. 8 - 2nd family of real perceptrons (+ means addition of new terms))

Page 9

Input & Class of output unit
Hidden
Units 1 2 3 4 5 6 7 8 9 0
1 const 0.600 | 0.020}-0.042 | 0.144 | 0.326 | 0.335 | 0.278 | -0.279 | -0.246 | -0.135
2 1 0330} 0.112) 0.073 {-0.279 | 0.050 | -0.011 | 0.246 | 0.059 | 0.143 | -0.062
(0.097) (0.045)
3 2 -0.156 | -0.140 | -0.270 | 0.250 | 0.008 | 0.006 { -0.155 | 0.018 | 0.233 | 0.205
(-0.266)|(-0.188) (0.219) (0.004)
3 -0.047 1 -0.035 [0.094 | 0.073 | -0.386 | -0.350 | 0.022 { 0.254 | 0.201 | 0.173
5 4 -0.162 | 0.204 | 0.192 | 0.142 | 0.089 | -0.002 | -0.281 | 0.006 | 0.014 | -0.202
(0.171)
6 5 -0.082 | 0.422 | -0.107 | -0.076 | -0.084 | 0.039 [-0.233 | -0.027 | -0.215 | 0.364
(0.374) (0.093)
6A7 -0.011 | -0.208 | 0.196 { -0.167 | 0.079 | -0.090 | -0.146 | 0.083 | 0.048 | 0.216
4AS5A6 0.106 | -0.420 | -0.067 | -0.051 | -0.208 | 0.310 [0.275 | 0.448 | -0.008 | -0.386

Fig. 9 - Selected perceptron (optimal weights are in brackets)

units to be added. (The acceptance constant can be viewed as a measure of the degree to
which the m.s.e. may be reduced by addition of new units.) The misclassification rates for all
these perceptrons, for the first 200 exemplars and then for the whole 5000, are given in Fig-
ures 7 and 8. We observe that although the m.s.e. decreased systematically with the higher
complexity of perceptrons, the misclassification rate for 5000 has well pronounced minima re-
gions on the level of relatively simple perceptrons. This phenomena can be interpreted as,
that from a certain moment, with the increased perceptron complexity we try to adjust to ‘the
noise’ in the sample of 200 rather than to ‘the information’. Note that similar observations
were made on numerous occasions in the past, e.g., in the area for decision trees, where they
were used as a basis for the pruning algorithms (cf.. Breiman er al. 1984, Quinlan 1983).
Note also that all of the above perceptrons have performance not worse than the final,
pruned decision tree produced by CART.

Figure 9 lists weights for the best of these perceptrons (No.3 in Fig. 8). Note that each of
the input units and each of the hidden units are connected to all output units, and that all
weights, apart from output bias, have absolute values less than 0.4. Other perceptrons dis-
play similar features.

3.3 Retraining. In the test for 5000 exemplars (Fig. 9), even the best of our perceptrons
had a misclassification rate higher than the theoretical optimum (0.26). The natural question
arises whether it is possible to retrain (redesign) this perceptron, by changing some of its
weights, in order to improve the performance. As a retraining algorithm one can use here for
instance the Widrow and Hoff (1960) training algorithm and change the weights gradually.
This procedure can be viewed as a simplified version of the popular back-propagation algo-
rithm by Rumelhart, Hinton and Williams (1986) and, as experience shows, will be relatively

Page 10

slow. However, it is not difficult to notice that in this particular case such an approach con-
verges and leads to the globally optimal solution.

The approach to retraining we have taken, was different from that described above. We
simply looked at the performance of the perceptrons all 128 possible input patterns and then
we modified some of the weights ‘manually’ to force the perceptrons to be Bayesian classifi-
ers. By changing selected weights of the perceptron in Fig. 9 to the ones in brackets, we ob-
tained near optimal perceptron with misclassification rate for 5000 equal to 0.261. Further-
more, using for the retraining of perceptron No. 2 in Fig. 8 some ‘true’ statistics for the sam-
ple of 5000, differing from the theoretical ones, we were able even to lower the
misclassification for 5000 to 0.2576, i.e. below the theoretical misclassification!

What this experiment shows is that it is still possible to improve the perceptron’s mis-
classification rate by its further retraining. The whole process can be actually fully automat-
ed, which will extend it in future to more complex

cases. However, before doing that we plan to Category | Class ID
evaluate a number of alternative approaches,
some of which (like ‘back-propagation’) are verb infinitive 0
‘mechanised’ by their very nature. present 1
past 2
34 Weights rounding. The purpose of the present participle 3
weights rounding is opposite to retraining: we past participle 4
aim here at ‘technological’ simplification of the special 5
perceptron structure at a cost of (hopefully insig- _
nificant) deterioration of performance. Apart from adjective 6
easing the manufacturing tolerance, the rounding
affects the important ratio between the largest adverb simple 7
and smallest of weights (cf. the discussion of the . complex 8
scale problem in Epilogue to 1988 edition of Min- :
sky and Papert). We found in a number of experi- noun plural 9
ments that perceptron structural simplification by singular 10
weight rounding was possible with marginal dete-
rioration of performance. For instance, for the per- pronoun demonstrative 11
ceptron No.3 in Fig. 8 (cf. Fig. 9) we have the fol- personal 12
lowing. All its weights (Fig. 9) are originally quantifier 13
specified to the third decimal place which, we re- relative 14
call, gives misclassification for 5000 equal to wh-question 15
0.2688. From our simulation it results that round-
ing weights in Fig. 9 to the second and to the first other article 16
decimal place deteriorates misclassification rate cardinal 17
for 5000 to 0.2694 and 0.2836, respectively. Note ordinal 18
also that the ratios between the largest to small- conjunction 19
est of weights are 300, 60 and 6 for the three, preposition 20
two and one decimal place weights, respectively. proper nouns 21
Thus the latter versions of perceptron are very at-

tractive from the point of view of implementation. . .
P P Fig. 10 - Word lexical classes

Page 11

Word Classification (by IDs) Comment
0123456789012345678901

abolish 106000600000000000000000 + infinitive_verb

abolished 0010100000000000000000 | + past_verb + pastpart_verb

abolishes 0100000000000000000000 | + present_verb

abolishing | 0001000000000000000000 | + prespart_verb

abolition 0000000000100000000000 + singular_noun

abolitions 0000000001000000000000 + plural_noun

absolute 0000001000000000000000 | + adjective

absolutely 0000000100000000000000 | + adverb

abstract 1000001000100000000000 | + adjective + infinitive_verb + singular_noun

abstracted 0010100000000000000000 | + past_verb + pastpart_verb

abstractly 0000000100000000000000 | + adverb

abstracts 0100000001000000000000 | + plural_noun + present_verb

any (0000000000000100000000 | + quantifier

anybody 0000000000001000000000 | + pronoun

anyhow (0000000000000000000010 | + preposition

Fig. 11 - Sample words classification

4 Deterministic binary perceptrons

The aim of this experiment was to construct and retrain a very large binary perceptron
which could be used as an information retrieval system. The application chosen was that of
lexical classification of English words, and the constructed network was subsequently used
as a part of a massively parallel integrated natural language parser COSIMO (Jennings,
Rowles and Kowalczyk 1989, Cybulski and Jennings 1989, Cybulski, Kowalczyk and Szy-
manski 1989b).

COSIMO’s lexicon consists of 1000 most frequently used English words of up to 10
characters, classified into 22 lexical categories (cf. Fig 10). Some of the lexicon words fall in-
to multiple classes, e.g. abstract may be classified as an adjective, a noun and an infinitive
verb. Thus, a lexicon may be viewed as a mapping from a set of words into a set of lexical
categories and classes. Since the mapping function is purely deterministic and a word and its
classification may easily be represented with the strings of binary values, the natural choice
for the lexical encoder was a binary perceptron.

Each of the perceptron training rules consisted of the word and its classification (Fig.
11). The word bitmap constituted a perceptron input layer of 260 units representing 10 char-
acters encoded as a series of 26 bits, each of the bits corresponding to one character of the
English alphabet. An ASCII encoding was also considered but experiments proved that a
more sparse word representation on input results in reduced interconnectedness in hidden

Page 12

and output layers of the perceptron. The output layer consisted of 22 units, each correspond-
ing to one of the lexical classes.

The perceptron training required 4138 s of CPU time on the VAX 3600 and aimed at
100% accurate word classification (for words embedded in the training set). The generated
perceptron had a mere 734 hidden units of 2-nd order, 1 unit of 3-rd order, and 8267 synaps-
es. The simulations of the perceptron-based word classifier showed the system to be rather
slow, nevertheless, its parallel architecture required only two levels of AND binary gates for
the implementation of a hidden layer and 8 levels of XOR binary gates for the outputs, and

‘thus its hardware implementation could be very efficient - 10 clock cycles per classification in
synchronized architecture, or even faster in unsynchronized implementation.

It should be noted that the lexicon implementation in a real or integer perceptron would
require fewer hidden units and layer interconnections, however, the storage requirements for
the binary perceptron are still drastically smaller (1 bit units as opposed to 16 or 48 bit units).

5 Conclusions

This paper introduced three different classes of two-layer perceptrons :- real, integer
and binary. It was suggested that some of the fully distributed learning methods, like back-
propagation, may be enhanced by some global pre-initialization of the perceptron architec-
ture. The training algorithm for the perceptron global optimization was briefly discussed and
several test results were reported, in particular:

(i) It was shown that perceptrons with real and integer coefficients are able to handle ef-
ficiently deterministic problems requiring large sets of exemplars (500 cases, 25 in-
puts, 20 outputs, and hidden units of 5-th order).

(ii) Real perceptrons are well suited for solving problems in noisy environment. We were
capable of designing a simple perceptron classifier with performance close to optimal
(i.e. theoretical misclassification - 0.26, misclassification decision tree designed by
CART - 0.301, ours - 0.261).

(iii) In an attempt to apply perceptrons to the information retrieval problems, we found
that binary perceptrons are quite effective in dealing with reasonably large volumes
of data (1000 records, 260 bit keys and 22 bits of data), and that their hardware im-
plementation could lead to very fast response times (10 machine cycles).

(iv) In large deterministic problems, the number of hidden units is of the order of the
number of exemplars.

(v) CPU time increases approximately proportionally with the size of the training set
raised to the power equal to the highest order of the required hidden units.

(vi) The simplicity is higher and the order much lower for the computer generated percep-
trons as compared to the human generated solutions.

Page 13

The presented results show that perceptrons have a great potential in the area of pattern rec-
ognition, classification, information retrieval, decision making in noisy environments, but also
in the area of parallel hardware design. Hence, it is reasonable to expect that perceptrons
could enhance or even replace other traditional methods of decision making, e.g. decision ta-
bles and trees.

6 Acknowledgement

We acknowledge the permission of Executive General Manager, Telecom Australia Re-
search Laboratories to publish this paper.

7 References

Ackley, D.H., Hinton, G.E. and Sejnowski, T.J. (1985): "A Leamning Algorithm for Boltzmann
Machines," Cognitive Science, Vol 9, pp 147-169.

Breinman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984): Classification and Regres-
sion Trees, Belmont, California: Wadsworth International Group.

Cybulski, J.L., Jennings, A. (1989): "COSIMO: A Massively Parallel Integrated Parser" CSS
Branch Paper 183, Telecom Australia.

Cybulski, J.L., Ferra, HL., Kowalczyk, A. and Szymariski, J. (1989): "Determining Word Lex-
ical Categories with a Multi-Layer Binary Perceptron” CSS Branch Paper 182, Telecom
Australia.

Grossberg, S. (1980): "How Does a Brain Build a Cognitive Code?," Psychological Review,
Vol 87, pp 1-51.

Hopfield, J.J. (1982): "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities,” Proc. of the National Academy of Sciences, Vol 79, pp 2554-
2558.

Jennings, A. , Rowles, C. D and Kowalczyk, A. (1988): "Natural Language Understanding in
the MEDICI Project," Proc. Int. Conf. on Comp. and Inf., Toronto, Canada 1988.

Kowalczyk, A. (1989a): "Empirical Induction Algorithm for Approximate Reasoning" CSS
Branch Paper 178, Telecom Australia.

Kowalczyk, A. (1989b): "Optimisation of Decision Operator” CSS Branch Paper 179, Tele-
com Australia.

Lippmann, R.P. (1987): "An Introduction to Computing with Neural Nets," IEEE ASSP Maga-
zine, IEEE, April, pp 4-22.

Michalski, R.S., Carbonell, J.G. and Mitchell, T.M. (1983): Machine Learning: An Artificial

Page 14

Intelligence Approach, Palo Alto, California: Morgan Kaufmann Pub. Inc.
Michie, D. (ed. 1979): Machine Intelligence, Edinburgh: Edinburgh University Press.

Minsky, M.L. and Pappert, S.A. (1969): Perceptrons, Cambridge, Massachusetts: The MIT
Press. (Expanded edition, 1988.)

Pawlak, Z., Wong, S.K.M. and Ziarko, W. (1987): "Rough Sets: Probablistic Versus Deter-
ministic Approach,” Technical Report, Department of Computer Science, University of Re-

gina.

Quinlan, J.R. (1979): "Discovering Rules from Large Collection of Examples: A Case Study,"
Expert Systems in the Microelectronic Age, in Michie 1979.

Quinlan, J.R. (1983): "Learning Efficient Classification Procedures and Their Application to
Chess and Games," in Michalski, Carbonell and Mitchell 1983, pp 463-482.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986): "Learning Internal Representations
by Error Propagation," in Rumelhart and McClelland 1986, pp 318-362.

Rumelhart, D.E. and McClelland, J.L. (eds 1986): Parallel Distributed Processing: Explora-
tions in the Microstructure of Cognition, Volumel: Foundations, Cambridge, Massachu-
setts: The MIT Press.

Widrow, B. and Hoff, M.E. (1960): "Adaptive Switching Circuits," 1960 IRE WESCON Con-
- vention Record, New York: IRE, pp 96-104.

Page 15

